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Abstract With the growing amount of personal informa-
tion exchanged over the Internet, privacy is becoming more
and more a concern for users. One of the key principles
in protecting privacy is data minimisation. This principle
requires that only the minimum amount of information neces-
sary to accomplish a certain goal is collected and processed.
“Privacy-enhancing” communication protocols have been
proposed to guarantee data minimisation in a wide range
of applications. However, currently, there is no satisfactory
way to assess and compare the privacy they offer in a pre-
cise way: existing analyses are either too informal and high
level or specific for one particular system. In this work, we
propose a general formal framework to analyse and com-
pare communication protocols with respect to privacy by
data minimisation. Privacy requirements are formalised inde-
pendent of a particular protocol in terms of the knowledge
of (coalitions of) actors in a three-layer model of personal
information. These requirements are then verified automat-
ically for particular protocols by computing this knowledge
from a description of their communication. We validate our
framework in an identity management (IdM) case study. As
IdM systems are used more and more to satisfy the increas-
ing need for reliable online identification and authentication,
privacy is becoming an increasingly critical issue. We use
our framework to analyse and compare four identity man-
agement systems. Finally, we discuss the completeness and
(re)usability of the proposed framework.
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1 Introduction

As more and more personal information is exchanged over
the Internet by businesses and other organisations, privacy
risks are becoming a major concern. For instance, e-health
and identity management systems deal with large amounts
of personal information. There have been numerous reports
of information from such systems being used for secondary
purposes [94] or being stolen and abused by third parties [80].
Legislation (e.g. EU Directive 95/46/EC, HIPAA) attempts
to reduce these risks by requiring such systems to satisfy
the data minimisation principle. That is, systems have to
be designed to ensure that actors in such systems collect
and store only the minimal amount of personal information
needed to fulfil their task. This means limiting the amount
of shared personal information, but also limiting the use of
identifiers that different actors can use to correlate their views
on a data subject [53].

One important approach to achieve privacy by data min-
imisation is the use of privacy-enhancing communication
protocols [53,93]. Such protocols use cryptographic primi-
tives to ensure that participants learn as little information as
possible and that they have as little ability as possible to cor-
relate information from different sources. Privacy-enhancing
protocols have been proposed for a wide range of applica-
tions: e.g. smart metering [82], e-voting [50], and electronic
toll collection [42].

Understanding the privacy differences between privacy-
enhancing protocols designed for the same purpose is impor-
tant, e.g. for system designers who want to use privacy-
enhancing protocols or for system administrators who want
to select what system to use. However, it is typically not
straightforward to obtain such an understanding. One rea-
son is that privacy-enhancing protocols typically combine
(advanced) cryptographic primitives in subtle ways; also,
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typical scenarios involve multiple actors which may collude
in different coalitions to correlate their views on data sub-
jects. Existing comparisons in areas such as e-health [74,92]
or identity management [1,55] are performed in an informal
and high-level (and thus, possibly subjective) way, and thus,
their privacy assessments do not offer much insight into dif-
ferences between systems and the reasons behind them. On
the other hand, proposals for privacy-enhancing systems typ-
ically assess the privacy of their own solution using termi-
nology and criteria specific to the setting at hand, making it
hard to compare different systems. Thus, we need a practical
way to compare different systems that is precise and veri-
fiable, yet application-independent; and that provides suffi-
cient detail for real insight into the privacy differences that
exist between systems.

Formal methods provide the machinery to perform such a
comparison. Over the years, formal methods, e.g. the applied
pi calculus [2], have arisen as an important tool to analyse
security of communication in IT systems [2,22,68,78]. The
idea is to express communication protocols in a suitable for-
malism and then verify whether such a model of the protocol
satisfies, e.g. authentication properties [22] or secrecy prop-
erties [10]. Secrecy, in particular, expresses one aspect of
privacy; namely, whether a certain piece of information is
known by some party in a protocol. However, it leaves unan-
swered a question which is equally important for privacy-
enhancing protocols; namely, whether a certain piece of
information can be linked to its corresponding data subject
(who, in general, might not be a direct participant in the com-
munication under analysis).

Recently, several research efforts have focused on the
analysis of privacy properties using the applied pi cal-
culus and related techniques [21,42,43,45,91], in appli-
cation domains such as electronic toll collection [42], e-
voting [43,45], and RFID systems [21]. While this approach
has delivered considerable successes, several issues inhibit its
use for our purposes, namely practical and accessible high-
level privacy analysis. First, in many cases, properties are
defined and verified specific to their respective settings or
protocols [42,43,45]. General definitions for the common
privacy property of linkability exist [5], but they are aimed
towards linking messages to their senders (whereas data min-
imisation concerns linking of information to its data subject)
and defined with respect to an outside attacker (whereas data
minimisation concerns the knowledge of actors or coalitions
inside the system). Second, such methods require consider-
able manual work for each property to be verified, in many
cases including particular assumptions on the model to make
computation feasible. Third, analysis results are not sum-
marised in a comprehensive and intuitive way, necessitating
substantial manual review.

In our previous works [96,99], we have introduced build-
ing blocks for high-level privacy analysis of protocols to

exchange personal information. We introduced a three-layer
model that captures the knowledge of personal informa-
tion held by different (coalitions of) communicating parties
[96,99]. The model captures the context in which pieces of
information have been observed, as well as the contents they
have. We showed how relevant privacy requirements can
be expressed as properties of items in this model. We also
showed how this model is determined from observations of
communication between the different parties. However, the
model of [96,99] only captures communication that uses a
limited set of cryptographic primitives; moreover, it does not
offer an implementation of the analysis method; and finally,
it does not discuss in general what kinds of privacy require-
ments can be verified or how to perform a privacy comparison
in practice.

In this work, we combine our previous building blocks
into a general framework for privacy comparison of commu-
nication protocols, and we apply the framework in an identity
management case study. Specifically, our contributions are as
follows:

– We present a framework to compare communication pro-
tocols with respect to privacy by data minimisation. Our
framework gives precise, verifiable results with enough
detail to obtain insight into privacy differences;

– We extend our previous formal method [96,99] for the
analysis of knowledge of personal information to cover
additional primitives and cryptographic protocols (specif-
ically, zero-knowledge proofs and issuing protocols for
anonymous credentials);

– We provide an implementation of the formal method in
Prolog to automate part of the comparison;

– We validate our framework by analysing and compar-
ing four identity management systems: we show that a
range of relevant privacy requirements can be captured
by our model, and use our framework to formally analyse
the identity management systems with respect to these
requirements.

Our privacy comparison framework consists of four steps,
shown in Fig. 1. The first two steps are to model the scenario
and its requirements. We introduce two formalisms: the Per-
sonal Information (PI) Model (Sect. 2.1) to model different
types of personal information and their relations; and the
view of an actor to describe the partial knowledge about this
information that this actor has at one point in time (Sect. 2.2).

Fig. 1 Steps of our privacy comparison framework

123



Data minimisation in communication protocols 531

The first step of our method comprises modelling all personal
information using a PI model and modelling the initial knowl-
edge of each actor as a view on that PI model. This means
modelling the personal information as used in the protocol
instances in the scenario; however, it also means modelling
other knowledge of personal information held initially by the
actors. This way, we can assess how links can be established
between the knowledge learned from the protocol instances
and the initial knowledge. The second step is to model data
minimisation requirements, i.e. which personal information
should become known or remain unknown to which actors
in the system. These requirements are phrased as properties
of the views of actors after communication has taken place.
These first two steps are performed independently from the
particular systems to be analysed.

The third step is then to model the exchange of informa-
tion in the information systems. For this, we need to model
the evolution of actor knowledge in such systems due to
the exchange of messages. We extend the PI model into an
information model that also includes messages using crypto-
graphic primitives, and the non-personal information they
may contain. We express the messages that an actor has
exchanged at a certain point in time using the notion of a
knowledge base on that information model (Sect. 3.1). We
define a procedure to determine an actor’s view from his
knowledge base (Sect. 3.2) and present an algorithm that
implements it (Sect. 3.3). Finally, we introduce states to for-
malise the knowledge of all actors in the system at one point
in time and traces to capture a series of communications that
transforms one state into another (Sect. 4).

The fourth step is to verify which systems satisfy which
requirements. This step is performed automatically using our
Prolog implementation.1 Given a PI model, set of formalised
requirements, initial state and trace, this tool first determines
the state of the system after communication; then uses our
formal procedure to compute the corresponding views of the
actors in the system and finally determines which require-
ments hold in these views.

We validate our framework by applying it to an iden-
tity management case study. Identity management (IdM)
systems [47,58,89] offers reliable online identification and
authentication to service providers by outsourcing these tasks
to “identity providers”. Identity providers endorse informa-
tion about their users and provide means for authenticat-
ing a user in a service provision. To organisations, identity
providers offer reduced cost for obtaining reliable user infor-
mation; to users, they offer increased convenience by let-
ting them reuse authentication credentials. The amount of
personal information exchanged in such systems makes pri-
vacy a critical issue; this is reflected by the large number

1 The tool and formal model of our case study are available at www.
mobiman.me/downloads/.

of privacy-enhancing IdM systems that have been proposed
[8,31,100]. However, while high-level sketches of privacy
issues [3,12,53,61] and comparisons of systems [1,55] exist,
no comprehensive set of relevant privacy requirements for
IdM systems has been proposed, nor do there exist precise
formal comparisons. We demonstrate that our framework can
be used to perform such a comparison. In Sect. 5, we present
our case study: we introduce IdM, discuss privacy require-
ments for IdM systems, and introduce four IdM systems. In
Sect. 6, we use our framework to formally compare the pri-
vacy offered by these four IdM systems with respect to the
requirements introduced above and discuss the results.

Finally, we discuss the completeness and (re)usability of
our framework (Sect. 7). We conclude the paper by discussing
related work (Sect. 8), drawing conclusions, and pointing to
interesting directions for future work (Sect. 9).

2 A model for knowledge of personal information

In this section, we present the Personal Information (PI)
Model and actor views. A PI model (Sect. 2.1) describes per-
sonal information in an information system at a certain point
in time; the view of an actor involved in the system on this
PI model (Sect. 2.2) captures the knowledge about this infor-
mation held by that actor. Privacy requirements (Sect. 2.3)
are modelled as properties of items from these views. The PI
model is used in step 1 of our framework (Fig. 1) to model
personal information, and it is the basis for the model of com-
munication in step 3. Views are used in step 1 to express initial
knowledge of actors; in step 2 to model requirements; and in
step 4 to compare actual knowledge to these requirements.
Our model is based on two main assumptions:

– Discrete information—There is a finite set of pieces of per-
sonal information that each belong to a particular data sub-
ject. In particular, we allow knowledge about finitely many
boolean predicates on personal information (e.g. “Alice’s
age is below k” for some particular value k). Each piece
of information has a well-defined contents. (However, dif-
ferent pieces of information may have the same contents.)

– Discrete knowledge—Actors may or may not be able to
learn these pieces of information; and they may or may
not be able to learn that these pieces of information are
about the same data subject. In both cases, we do not allow
uncertainty: either an actor knows a piece of information
or a link or he does not.

The above abstractions are common in the protocol veri-
fication literature [68] and simplify both the specification
of requirements and the modelling of protocols. We discuss
approaches that do not make these abstractions in Sect. 8.
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2.1 Personal information model

A Personal Information (PI) model describes all personal
information present in an information system at a certain
point in time.

2.1.1 Personal information

A piece of personal information in the PI model is a specific
string that has a specific meaning as personal information
about a specific person, e.g. “the age of Alice”. We distinguish
between two types of digital personal information: identifiers
and data items. Identifiers are unique within the system; for
data items, this is not necessarily the case. The sets of iden-
tifiers and data items are denoted I and D, respectively. We
express that pieces of personal information satisfy certain
fixed boolean properties relevant to the application domain
by a set {ψ1, . . . , ψk} of partial functions I ∪ D → D that
assign properties to some of the identifiers and data items.
For instance, suppose ψ j represents the property that an age
is over 60. If ψ j (d) is defined, i.e. d has an image under
partial function ψ j , then d represents the age of a data sub-
ject who is over 60 and ψ j (d) represents the fact that this
data subject has an age over 60. If ψ j (d) is not defined, i.e.
d does not have an image under partial function ψ j , then
either d does not represent an age or it represents an age
below 60. The set E of entities models the real-world per-
sons whom the considered information is about. Elements
of the set O := E ∪ I ∪ D are called items of interest. The
link between information and its subject is captured by the
related relation, an equivalence relation on O denoted ⇔.
Namely, given two items of interest o1, o2 ∈ O, o1 ⇔ o2

means that o1 and o2 are information about the same person.
These concepts, however, are insufficient to model all pri-

vacy aspects of communication protocols that we are inter-
ested in. First, it is relevant to know whether different pieces
of information have the same contents or not. For instance,
Alice’s age may be the same as Bob’s, and Alice’s age may
be the same as Alice’s apartment number. Whether this is the
case influences what information can be determined from
cryptographic primitives: for instance, an actor can deter-
mine a piece of information from its cryptographic hash if he
knows another piece of information with the same contents.
Second, it is relevant to know how an actor obtained a piece
of information. We assumed that actors combine pieces of
information that they know belong to the same data subject.
However, if an actor learns the same piece of information
(e.g. “the age of Alice”) several times (e.g. in two protocol
instances with different session identifiers), he may not know
that it is the same information. Thus, to represent the knowl-
edge of this actor, we need to distinguish between these two
“representations” of the information.

2.1.2 Three-layer model

Because of the need to distinguish different instances of the
same piece of information, as well as to reason about message
contents, we introduce a three-layer representation of per-
sonal information. The representation consists of the context
layer, information layer, and contents layer. At the infor-
mation layer, as described above, the information itself is
represented, e.g. “Alice’s city”. At the context layer, infor-
mation is described in terms of the context in which it has
been observed, e.g. “the city of the user in protocol instance
#1”. At the contents layer, information is described in terms
of the strings actually transmitted in a protocol, e.g. “Eind-
hoven”. Actor knowledge is modelled using the context layer
and reasoned about using the contents layer; the information
layer is used to specify privacy requirements or visualise
analysis results [97].

At the context layer, we model the context in which an
actor knows pieces of information. A context is an item ∗|ηk ,
where η is called the domain, and k is called the profile.
A domain is any separate digital “place” where personal
information is stored or transmitted, e.g. a database or an
instance of a communication protocol. A profile represents
a particular data subject in a domain, e.g. an entry about
one person in a database or a logical role in a protocol
instance (however, different profiles in a domain may still
represent the same data subject, e.g. duplicate entries in a
database).

In such a context, pieces of information are represented
by variables. A variable describes the type of information in
the context of that domain, e.g. “session identifier” or “age
attribute”. Namely, the piece of information with variable v
in context ∗|ηk is denoted v|ηk . Context-layer representations
of entities, identifiers, and data items are modelled by context
entities Ec, context identities Ic, and context data items Dc,
respectively. The set Oc := Ec ∪ Ic ∪ Dc is the set of all
context personal items. The unique context entity in context
∗|ηk is denoted ds|ηk . Properties of identifiers and data items
are modelled at the context layer by extending the partial
functions ψi above.

We represent personal information at the contents layer as
elements from an arbitrary set C of message contents. In fact,
for our purposes, the exact representation is not relevant; it
suffices to know which pieces of information have the same
contents, and which do not.

Apart from these three descriptions of pieces of personal
information, the PI model also defines mappings between the
three layers. Namely, it defines a mapping σ from the context
layer to the information layer; and a mapping τ from the
information layer to the contents layer. Properties of σ and τ
reflect characteristics of the different pieces of information,
as shown below.

Formally, a PI model is defined as follows:
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Fig. 2 Personal information
model of Example 1

Definition 1 A Personal Information (PI) Model is a tuple

(Oc,O,⇔, σ, τ, {ψ1, . . . , ψk})
so that:

– Oc is a set of context personal items, partitioned into
Oc = Ec ∪ Ic ∪ Dc. Here, Ec are context entities ds|κn
with arbitrary domain κ and profile n; Ic and Dc are con-
text identifiers and context data items v|κn with arbitrary
variable v, domain κ and profile n, respectively;

– O is a set of items of interest, partitioned into O = E ∪
I ∪ D. Here, E are entities; I are identifiers; and D are
data items;

– ⇔⊂ O × O is the related relation on O: an equivalence
relation so that every item of interest is related to exactly
one entity;

– σ is a map Oc → O so that σ(Ec) ⊂ E ; σ(Ic) ⊂ I; and
σ(Dc) ⊂ D; and σ(x |ηk ) ⇔ σ(y|ηk ) for any x |ηk , y|ηk ;

– τ is a map I∪D → C so that ∀i1, i2 ∈ I: if τ(i1) = τ(i2),
then i1 = i2;

– {ψ1, . . . , ψn} are partial functions ψi : Ic ∪ Dc → Dc,
I ∪ D → D so that: 1) ψi (o) is related to o ∈ I ∪ D
whenever defined; 2) τ(ψi (o1)) = τ(ψi (o2)) whenever
defined for some o1, o2 ∈ I ∪ D; 3) ψi (o) has the same
context as o ∈ Ic ∪ Dc whenever defined; 4) σ(ψi (o)) =
ψi (σ (o)) for every o ∈ Ic ∪Dc for whichψi (o) is defined.

The first two bullets of the definition define information
at the context and information layers, respectively; the third
bullet defines personal relations at the information layer. The
fourth and fifth bullet define the mapping between the three
layers: we demand that the contents of identifiers are unique.
The sixth bullet introduces properties both at the context and
information layers. Properties at the information layer pre-
serve relation ⇔ (1) and have contents independent from the
item they are a property of (2); properties at the context layer
preserve context (3) and are consistent with the information
layer properties (4).

We introduce notation for context personal items x |ηk , y|χl
representing the same information or contents. If σ(x |ηk ) =
σ(y|χl ), then we write x |ηk ≡ y|χl and we call x |ηk and y|χl
equivalent. If τ(σ (x |ηk )) = τ(σ (y|χl )), then we write x |ηk .=
y|χl and we call them content equivalent. Clearly, equivalence
implies content equivalence.

The next example shows a PI model as used in step 1 of
our analysis framework, i.e. to model all personal information
present in a particular scenario.

Example 1 Figure 2 shows a PI model representing personal
information about two entities, Alice (al ∈ E) and Bob
(bob ∈ E), in a simple scenario. Recall that a PI model is
used to express all personal information in a scenario, regard-
less of which protocols are used; regardless of who knows the
information, and also including other information that it may
be linked to by the actors involved. In this scenario, a client
and a server exchange information about Alice. Namely, the
server has a database with personal information about dif-
ferent entities; the server and client engage in a protocol to
exchange information about Alice; and the client combines
the results with her address book.

At the information layer of this PI model, Alice has iden-
tifier ida and an age agea ; Bob has identifier idb, age ageb,
and telephone number telnb. Alice and Bob happen to have
the same age, so τ(agea) = τ(ageb); the other pieces of
information have distinct contents (This example does not
consider attribute properties).

At the context layer of this PI model, the personal infor-
mation in this scenario is modelled as follows:

– domain db (database held by the server): Each profile
k ∈ {1, 2} in this domain represents a database entry con-
sisting of database key key|db

k and column value col1|db
k .

As shown in the figure, the keys and column values map
to the data subjects’ identifiers and ages, respectively. The
data subject of profile k is represented by context entity
ds|db

k .
– domain ab (address book of the client): Each profile

k ∈ {4, 12} in this domain represents an entry in the
address book. The fourth entry of the address book con-
tains an identifier id|ab

4 ; the 12th entry contains a telephone
number teln|ab

12 .
– domain π (protocol instance): The client and server

engage in an instance π of a protocol in which identifier
id|πsu and attribute attr |πsu are exchanged about data sub-
ject su; in this case, the subject is Alice and the attribute
is her age.

(In a full analysis using our framework, we would also model
the client and server as entities. This allows us to reason
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about knowledge about their involvement in this scenario.
For simplicity, we omit them here).

2.2 Views: actor knowledge

Each actor in an information system has partial knowledge
about the personal information in that system. Our framework
analyses privacy by data minimisation by verifying that this
partial knowledge satisfies certain requirements. We model
actors as a finite set A. We require each actor to be an entity
in the PI model, i.e. A ⊂ E . The knowledge of an actor at
some point in time consists of knowledge of some pieces
of personal information, and knowledge that some of these
pieces of information are about the same person. We cap-
ture this knowledge as a view on the PI model, consisting of
a set of context-layer items and an equivalence relation on
them:

Definition 2 Let M = (Oc,O,⇔, σ, τ, {ψ1, . . . , ψk}) be a
PI Model. A view on M is a tuple V = (O∗,↔∗) such that:

– O∗ ⊂ Oc is the set of detectable items;
– ↔∗⊂ O∗×O∗ is the associability relation: an equivalence

relation on O∗.

The view of actor a ∈ A, determined in step 4 of our
framework, is denoted Va = (Oa,↔a). From a privacy per-
spective, we are not just interested in the views of single
actors a ∈ A, but also in the views of coalitions A ⊂ A.
Such a view represents knowledge of personal information
when the actors in the coalition combine all information
(e.g. databases, communication transcripts) they have. The
view of coalition A ⊂ A after communication is denoted
VA = (OA,↔A). It contains at least the knowledge of each
individual actor in the coalition.

We next show an example of the views of actors and coali-
tions, as they may be obtained in step four of our framework
when analysing a particular communication protocol.

Example 2 Consider the PI model M from Example 1. The
actors in this information system are the client and server, i.e.
A = {c, s}. Figure 3 shows example views of these actors
after some particular communication protocol has been exe-
cuted (domain π ).

First consider the view Vc = (Oc,↔c) on M modelling
personal information known by the client. This information
comprises the entries from her telephone book and the infor-
mation about Alice that has been communicated. Namely,
the client knows Bob’s telephone number telnbob as entry
teln|ab

12 ∈ Oc in her telephone book; she also knows that
this is Bob’s telephone number, expressed by detectability
ds|ab

12 ∈ Oc and associability ds|ab
12 ↔c teln|ab

12 . About Alice,
the client knows two context-layer representations of iden-
tifier ida : as part of her telephone book entry (id|ab

4 ∈ Oc),

and as a piece of information sent in protocol instance π
(id|πsu ∈ Oc). She again knows the data subject correspond-
ing to the telephone book entry (ds|ab

4 ), and she knows the
age transmitted in the protocol (attr |πsu ∈ Oc). Moreover,
she can associate the information in the address book to the
information from the protocol instance.

The view Vs = (Os,↔s) of the server also contains
information about both Alice and Bob. About Bob, the
server knows two mutually associable pieces of information
col1|db

2 , key|db
2 from the database. About Alice, the server

also knows two associable pieces of information from the
database. In addition, it knows the two other context-layer
representations id|πsu , attr |πsu of that same information as
transmitted in the protocol instance π .

Now consider the view V{c,s} of the client and server if they
combine their knowledge. In this view, all information about
Alice from the two actors is mutually associable because
both actors know the same identifier (in the figure, all con-
text personal items about Alice are connected by arrows).
However, information about Bob is divided into two equiva-
lence classes: the client knows entity bob and his telephone
number telnbob and the server knows age ageb and telephone
number telnb, but they cannot associate this information to
each other (indicated by the absence of arrows between the
information in the figure).

2.3 Privacy requirements

The second step of our analysis framework is to model each
relevant data minimisation requirement in terms of the views
of actors and coalitions. This includes both modelling func-
tional requirements, i.e. modelling what should be learned
by the actors in the protocol, and modelling privacy require-
ments, i.e. modelling what should not be learned. These
requirements are formulated independently from any particu-
lar system, then verified for each particular system modelled.
Thus, our framework can be used to generically verify any
requirement that can be phrased in terms of views, including:

– Detectability requirements—Can a given actor/coalition
of actors detect a given piece of information or a given
context-layer representation?

– Linkability requirements—Can a given actor/coalition of
actors associate given contexts or any contexts in which
he knows given pieces of information?

– Involvement requirements—Is there a domain d in which
an actor can associate one profile to a given context c1, and
another to a given context c2, i.e. does he know that the
actors represented by c1, c2 were both involved in domain
d?

More complex requirements can be defined as arbitrary
combinations of these elementary requirements and their
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Fig. 3 Views of actors c and s and coalition {c, s} in a scenario (Example 2). Detectable context personal items are shown; grey areas are sets of
equivalent items. Associations are represented by arrows; for simplicity, they are shown up to equivalence

negations. The next example shows different types of require-
ments.

Example 3 We formulate three requirements for the scenario
given in Example 1. Recall that we have actors A = {c, s}
with views

Vc = (Oc,↔c), Vs = (Os,↔s)

and V{c,s} = (O{c,s},↔{c,s}).

First, since the goal of the protocol is to exchange informa-
tion, we can check whether the client has indeed learned the
age of Alice and whether she can link it to her telephone
book entry. This corresponds to verifying that attr |πsu ∈ Oc

and attr |πsu ↔c id|ab
4 hold (a detectability requirement and a

linkability requirement, respectively). Second, since the pro-
tocol does not concern Bob, we may want to make sure that
the client and server together cannot inadvertently link Bob’s
telephone number and age due to this protocol instance. This
corresponds to verifying that teln|ab

12 ↔c,s col1|db
2 does not

hold (an unlinkability requirement).
Now consider the views in the particular system from

Example 2. In this case, both properties hold. Namely, in
view Vc, attr |πsu ∈ Vc and age|πsu ↔c id|ab

4 are true (Fig. 3,
left), while in view V{c,s}, teln|ab

12 ↔c,s col1|db
2 is not true

(Fig. 3, right).

We show additional examples of the different types
requirements in Sect. 6 when analysing identity management
systems. In Sect. 7, we discuss what kind of requirements
cannot be represented in this way.

3 Deducing views from communicated messages

In this section, we determine the views of actors by mod-
elling and analysing the messages they have exchanged. We
present the information model, capturing messages contain-
ing personal information; and knowledge bases, capturing
which messages an actor has observed at a certain point in
time. We then propose a formal procedure to derive an actor’s
view from his knowledge base. This procedure is based on
the following main assumptions:

– Detecting from messages—We model messages using a
Dolev–Yao-style black-box model of cryptography. A
piece of personal information is detected using a message

it occurs in by: 1) reading it from that message; 2) apply-
ing a cryptographic operation on the message that uses
the information; or 3) comparing the message’s contents
to another message whose structure is known.

– Associating by identifiers—Contexts are associated with
each other by observing that the same identifier or entity
occurs in both contexts.

The modelling of cryptographic primitives and operations as
“terms” in a black-box model is standard ever since the sem-
inal work by Dolev and Yao [44]. Determining what knowl-
edge can be read from such messages can be done using
standard deductive systems [37,44,49]. When adapting these
standard techniques to our model of personal information,
observing the application of cryptographic operations and
comparing the contents of messages are needed as exten-
sions. These three ways of deriving personal information
also occur in the popular equational approach using static
equivalences [16]; see Sect. 8 for a comparison.

Defining associability by identifiers is suitable for our
goal, namely comparing different protocols with respect to
the knowledge that actors learn. Namely, protocols differ in
what identifiers they use and how; our definition of associa-
bility allows us to reason about the privacy consequences
this has. Associability does not take into account probabilis-
tic links due to (combinations of) non-identifying personal
information; probabilistic linking methods are orthogonal to
our approach (see Sect. 8).

The formalisation of messages and knowledge bases is
described in Sect. 3.1; the methodology for determining
views from knowledges base is described in Sect. 3.2.

3.1 Messages, information model, knowledge base

Communication in privacy-enhancing protocols uses mes-
sages built up from personal and other information, e.g.
nonces and session keys. At the context layer of our three-
layer model, non-personal information is modelled by a set
Gc of context non-personal items. Items in Gc belong to a
domain, but not to a profile: in this case, we denote the profile
as ·, e.g. shakey|η· . At the information layer, we define set G
of non-personal items.

Messages built from personal and non-personal infor-
mation using cryptographic primitives such as encryption,
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signatures, and hashes are defined using a grammar. Fig-
ure 1 shows the grammar for the primitives used to model the
identity management architectures presented in Sect. 5. For
instance, S∗(∗) represents digital signatures: if k−|πs ∈ Ic is a
private key and d|πsu ∈ Dc is a data item, then Sk−|πs (d|πsu) is a
digital signature on the data item using the key (In this case,
we write Sk−|s (d|su)|π as shorthand). Although we model
particular primitives here, our approach in general is indepen-
dent from the particular primitives that are used; in Sect. 7,
we offer some insight into the effort needed to model other
primitives. As usual (e.g. [17]), the public key belonging to
private key k− is represented as pk(k−).

We model the following cryptographic primitives. Con-
catenation, hashing, and (a)symmetric encryption are mod-
elled as usual [37,49]. Digital signatures are “with appendix”
[69]: that is, an actor needs to know the message that was
signed in order to verify the signature. Labelled asymmetric
encryption [8] is asymmetric encryption to which a label is
unmodifiably attached at encryption time. For instance, the
label can represent a policy specifying when the recipient
is allowed to decrypt the data. Authenticated key agreement
(AKA) [63] allows two parties to derive a unique session key
based on secret keys and randomness contributed by both
parties. We consider the variant presented in [63] in which
both parties send each other a random value. Both parties can
determine the session key, modelled by the AKA primitive,
from one private key, the other public key, and the random-
ness. The cred primitive models anonymous credentials [8].
Message credM1

M2
(M3; M4) represents an endorsement with

private key M2 that the attributes M3 belong to the user with
identifier M1, randomised using M4.

We also model two-party cryptographic protocols. Using
these protocols, anonymous credentials can be issued without
the issuer obtaining the credential or learning M1; also, their
ownership can be proven without revealing the credential
itself. Such protocols only have meaning when looked at as
a whole, i.e. the meaning lies not in individual messages, but
in their combination in a particular order. Thus, we model
the complete transcript (i.e. all messages of all participants)
of such a protocol as one grammar element. We introduce
two such primitives.

First, we model a family of zero-knowledge (ZK) proofs
(e.g. [41]) by means of the ZK primitive. In a ZK proof
for a given property, a prover wants to convince a verifier
that he knows some secrets satisfying that property with
respect to some given public information, without reveal-
ing anything about the secrets. Here, we consider ZK proofs
proving that (1) the public information has a certain mes-
sage structure with respect to the private information and
(2) some secret attributes di satisfy some properties ψk(di ).
For instance, ZK({d,n};H({d,n});ψ2(d); n′) denotes a ZK
proof (using randomness n′) convincing a verifier know-
ing the hash H({d,n}) that the prover knows the pre-image

{d,n} of the hash and that ψ2(d) is satisfied; without the
verifier learning anything else about d or n. See “Zero-
knowledge proofs” section of Appendix for a detailed dis-
cussion.

Second, we model the issuing protocol for anonymous
credentials [8] by means of the ICred primitive. This pro-
tocol is run between a user and an issuer. In advance, both
parties need to know the attributes to be certified, but only
the user needs to know the identifier to which the attributes
are issued. As a result of the protocol, the user obtains an
anonymous credential linking the attributes to the identifier.
The issuer does not learn the credential; moreover, because
he does not know the identifier, he cannot issue credentials in
her name without her involvement. Also, by using ZK proofs
for proving ownership, the credential can be “shown” with-
out revealing the identifier. See “Anonymous credentials and
issuing” section of Appendix for details.

Formally, we define an information model that extends
the personal information model from Definition 1 by adding
non-personal information and messages:

Definition 3 An information model is a tuple

(Lc,L,Ec, E,⇔, σ, τ, {ψ1, . . . , ψk})
so that:

– The set Lc of context messages consists of sets Ic of context
identifiers, Dc of context data items, and Gc of context non-
personal items, and messages built from them using the
grammar of Table 1. Here, Ic and Dc are as in Definition 1;
Gc consists of items p|η· with arbitrary variable p and
domain η; the set Pc := Ic ∪ Dc ∪ Gc is the set of context
items;

– The set L of information messages consists of sets I of
identifiers and D of data items as in Definition 1; G of
non-personal items; and messages built from them using
the grammar of Table 1;

– Sets Ec of context entities and E of entities, and the related
relation ⇔ on O = E ∪ I ∪ D are as in Definition 1.

– σ is a map Lc ∪ Ec → L ∪ E ; as a map σ |Oc : Oc → O,
σ is as in Definition 1 (where Oc = Ec ∪ Ic ∪ Dc, and
O = E ∪ I ∪ D); also, σ(Gc) ⊂ G, and σ preserves the
grammar structure of messages;

– τ is a map L → C; τ |I∪D is as in Definition 1; τ(E ′
x (y)) =

τ(z) iff z = E ′
x ′(y′), τ(x) = τ(x ′) and τ(y) = τ(y′); and

similarly for other primitives.
– {ψ1, . . . , ψk} are partial functions ψi : Ic ∪ Dc → Dc,

I ∪ D → D as in Definition 1.

In particular, (Oc,O,⇔, σ, τ, {ψ1, . . . , ψk}) in the above
definition is a PI model. Note that (context) entities can-
not occur in messages, so we mention them explicitly in
the tuple defining an information model. The maps σ and

123



Data minimisation in communication protocols 537

Table 1 Grammar defining sets of cryptographic messages at context layer (Lc) and information layer

Messages Meaning

M,Mi : := ∅ | Empty message

p | Information (for Lc: p ∈ Ic ∪ Dc ∪ Gc; for L: p ∈ I ∪ D ∪ G)

pk(M1) | Public key corresponding to private key M1

{M1, . . . ,Mn} | Concatenation of messages M1, . . . ,Mn

H(M1) | Hash of message M

E ′
M1
(M2) | Symmetric encryption of message M2 with key M1

EM1 (M2) | Asymmetric encryption of message M2 with public key M1

SM1 (M2) | Digital signature of message M2 with private key M1

EM1 (M2)M3 | Labelled asymmetric encryption of message M2 with public key M1 and label M3

AKA(M1; M2; M3; M4) | Derived key from authenticated key agreement (AKA) with (SK,randomness) pairs (M1,M2) and (M3,M4)

credM1
M2
(M3; M4) | Anonymous credential with user identifier M1, issuer private key M2, attributes M3, and randomness M4

ZK(M1; M2; M3; M4) | Zero-knowledge proof of knowledge of secret M1 with properties M3
using public information M2 and randomness M4

ICredM1
M2
(M3; M4) Issuing protocol for anonymous credential credM1

M2
(M3; M ′

4), where M ′
4 is derived from M4

τ preserve grammar structure; for instance, if σ(k−) = skal

and σ(d) = agebob, then σ(Sk−(d)) = Sskal (agebob). Like
pieces of personal information, we call context messages m
and n in general equivalent iff σ(m) = σ(n), and content
equivalent iff τ(σ (m)) = τ(σ (n)).

The above restrictions on the way τ acts on encryptions,
and other primitives (the fifth bullet of the definition) reflect
two assumptions on message contents: namely, that they
are deterministic and unique. The “if” part of the statement
reflects determinism, meaning that given the same contents as
input, cryptographic primitives always give the same output.
Randomness, e.g. in signing or in non-deterministic encryp-
tion, can be modelled explicitly as part of the plaintext. By
assuming deterministic messages, we can distinguish the case
where an actor observes two different randomised encryp-
tions with the same input from the case where he observes
the same randomised encryption twice; in the latter case, we
will allow an actor to draw certain conclusions from this.
The “only if” part reflects uniqueness. Concerning unique-
ness, note that differently constructed messages could a priori
have the same contents; e.g. the hashes of two different values
could collide; or the hash of some value could be the same as
the encryption of some other value. We assume that this does
not happen, i.e. elements of our grammar at the contents layer
uniquely represent message contents (the structural equiva-
lence assumption [99]).

The complete knowledge of an actor is modelled by a
knowledge base. We model this knowledge at the context
layer so that we can later determine what knowledge of per-
sonal information follows from it. Formally:

Definition 4 Let I = (Lc,L,Ec, E,⇔, σ, τ, {ψ1, . . . , ψk})
be an information model. A knowledge base on I is a set
C ⊂ Lc ∪ Ec.

In addition to the messages an actor has sent and received,
his knowledge base needs to contain the pieces of personal
information from his initial view. This includes context enti-
ties: because they cannot occur in messages, we mention
them explicitly in the definition. Also, the knowledge base
should contain other relevant material such as secret keys
known by the actor, and nonces he has generated during the
execution of the cryptographic protocols. Note that we do
not need to specify the order of messages: because we use
contexts, we can already distinguish between messages from
different protocol instances. We use the notation Ca to refer
to the knowledge base of an actor a, and CA to refer to the
knowledge base of coalition A ⊂ A (defined to be the union
of the knowledge bases of the respective actors, see Sect. 4).

In the next example, we show several context messages
and the knowledge base of an actor after communication.

Example 4 We consider the PI model of Example 1. We
model two context messages in domainπ , which represents a
protocol instance. First, we model a symmetric encryption of
Alice’s identifier, encrypted using a shared key. The shared
key is modelled by a non-personal item with context-layer
representation shkey|π· . The encryption is then denoted

m1 = E ′
shkey|·(id|su)|π .

Second, we model a message representing an encryption
under shkey|π· of Alice’s age and a randomised signature
on her age using the server’s secret key. The randomness
used in the signature is represented as a non-personal item
with context-layer representation n|π· . The secret key of the
server is context identifier k−|πsrv . The second message is:

m2 = E ′
shkey|·({age|su, n|·, Sk−|srv

({age|su, n|·})})|π .
We now consider the knowledge base of the client, supposing
that he has observed (i.e. sent or received) messages m1 and
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m2. We model the communication addresses that the client
and the server have used as context identifiers i p|πcl , i p|πsrv .
The client knows these, as well as messages m1,m2. In addi-
tion, his knowledge base contains the personal and other
information known at the beginning of the scenario. Apart
from his address book, we assume that this initial knowledge
includes the shared key, as well as his own address and the
address and public key of the server, known in some arbi-
trary contexts ∗|··, ∗|·me, ∗|·srv . His full knowledge base after
communication is then:

Ccli = {ds|ab
12 , teln|ab

12 , ds|ab
4 , id|ab

4 , skey|··, i p|·me, i p|·srv,

pk(k−|·srv), i p|πcl , i p|πsrv,m1,m2},

with ds|ab
12, ds|ab

4 context entities and the other elements of
Ccli context messages.

3.2 From knowledge base to view

In this subsection, we show how to determine the view cor-
responding to a knowledge base. The first component of the
view, the set of detectable items, is defined using a deductive
system. The second component, the associability relation, is
defined based on linking identifiers and entities.

3.2.1 A deductive system for detectability

In this section, we define what messages containing personal
information can be built from knowledge base C. Informally,
we say that message m is detectable from C, written C � m,
if it can be obtained from messages in C using the three oper-
ations on messages described at the beginning of this section:
reading information from them, applying cryptographic oper-
ations on them, and comparing the contents of messages. In
particular, detectability of context identifiers and data items
in a view is defined as detectability from as messages from
the corresponding knowledge base.

The semantics of � is given by a deductive system.
Deductive systems are commonly used in protocol analy-
sis to reason about what messages an attacker can fabricate
(see, e.g. [37,49]). Typically, such deductive systems con-
sist of general axioms stating which messages are known;
and particular construction and elimination rules stating the
functionality of cryptographic primitives: construction rules
describe how a cryptographic primitive is constructed from
its parts (e.g. a symmetric encryption is constructed from the
key and plaintext); elimination rules describing how parts
can be obtained from a cryptographic primitive by applying
cryptographic operations (e.g. the plaintext is obtained from
an encryption by decrypting using the key). However, in these
works, such rules operate directly on message contents, with-
out taking into account what information they represent, or

in which context this information is known (i.e. they operate
at our contents layer). Conversely, for our purposes, we need
to consider the context: hence, we need to re-interpret these
rules at the context layer and add additional ones. Our formal
definition of � is as follows:

Definition 5 Let C be a knowledge base, and m a context
message. The detectability relation C � m is defined by the
inference rules given in Fig. 4.

The deductive system in Fig. 4 consists of three general
rules (�0), (�Eψ), and (�C); and particular construction,
elimination, and testing rules for the particular cryptographic
primitives modelled. Hence, when using our framework to
analyse a system, (�0), (�Eψ), and (�C) are always the
same; the other rules need to be adapted to model the partic-
ular primitives used in the system.
(� 0) is the standard axiom to detect known messages.

Construction and elimination rules, in particular those for
(standard) hashes, (a)symmetric encryption, concatenation,
and signatures, are as usual [37]. For instance, rule (�CE)
states that symmetric encryption E ′

n(m) can be detected if m
and n can be detected, and rule (�EE) states that plaintext m
can be obtained from encryption E ′

n(m) if key n is known.
However, note that because our deductive system operates at
the context layer, rule (�EE) only applies if the key is known
in the same context as the message. Thus, this rule fails to
capture that an actor can perform decryption using keys he
knows from different contexts. To avoid this problem, we
introduce testing rules. These rules let an actor detect a new
context-layer representation of a messages whose contents
he already knew by applying a cryptographic operation. For
instance, rule (�TE) states that if an actor can detect encryp-
tion E ′

n(m) and any message content equivalent to n, then he
can detect n. He can then use n to decrypt the message.

Example 5 shows a typical example of the use of testing
and elimination rules.

Example 5 Consider knowledge base Ccli from Example 4.
Then id|πsu is detectable from Ccli by the derivation shown
in Fig. 5. The derivation models the actor testing whether
skey|·· is the decryption key for E ′

shkey|·(id|su)|π (�TE).
(Rule (�TE) can be applied because shkey|π· .= skey|··.)
After learning that it is, the actor can decrypt the message
(�EE).

We assume that for any cryptographic operation modelled
by an elimination rule, there is a corresponding testing rule
(This is an overestimation in case the actor cannot distinguish
between a failed and successful cryptographic operation, e.g.
when certain kinds of encryption schemes are used in which
the plaintext resulting from decryption cannot be recognised
as valid). On the other hand, not all testing rules testing have a
corresponding elimination rule, e.g. rule (�TS) for signature
verification.
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Fig. 4 Deductive system for detectability: m, mi , n, ni , k−, k+, k−
i and

∗′ any context message; d ∈ Ic ∪ Dc any context identifier or data item;
p∗ ∈ Dc any context data item. ∗′ .= ∗ means “for any pair of dashed

and non-dashed context messages”. Rules (�0) to (�TS) explained in
Sect. 3.2.1; rules (�CL) to (�TI6) in Sect. 3.2.2

Fig. 5 Derivation of id|πsu
given knowledge base Ccli from
Example 4 (see Example 5)

Differently from other deductive systems, we introduce
two additional general rules: (�Eψ) to reason about proper-
ties of attributes and (�C) to reason about contents of mes-
sages. Rule (�Eψ) states that any properties that apply to
an attribute can be detected from the attribute. Note that,
because the rule only applies if image ψi (d) under the par-

tial function ψi is defined, only applicable properties can be
detected. Rule (�C) covers knowledge obtained by compar-
ing contents of different messages.

Before we can discuss rule (�C) in detail, we first need to
formalise the notion of submessages of a message. A message
m has a natural syntactic structure according to the grammar
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Fig. 6 Parse tree of message H(E ′
n(m)) (left) and submessages (right)

in Fig. 4. This structure can be represented by a parse tree,
in which the nodes are the submessages of m; the root is the
message m itself. We write m@z for the submessage of m at
path z from m in its parse tree; the empty path is denoted ε.
Figure 6 shows the parse tree of a message (left) and the cor-
responding formal representation of its submessages (right).

If two context messages m1 and m2 are content equivalent,
then by the uniqueness assumption, their respective submes-
sages are also content equivalent. That is, if m1

.= m2 and
m1@z and m2@z are defined (i.e. there exists a submessage
at path z), then m1@z

.= m2@z. Also, if m1 and m2 contain
data items satisfying a property ψk , the content equivalence
of that property is also implied. Formally:

Definition 6 The pair (m1,m2) is evidence for n1
.= n2,

denoted (m1
.= m2) ⇒ (n1

.= n2), if one of the following
two conditions holds:

– m1
.= m2, and for some z, m1@z = n1 and m2@z = n2;

– (m1
.= m2) ⇒ (n′

1
.= n′

2), and for some i , n1 = ψi (n′
1)

and n2 = ψi (n′
2).

The “content analysis” inference rule (�C) then states
that if an actor can derive evidence (m1,m2) for n1

.= n2

and he can derive a message with n1 in it, then he can derive
the same message with n1 replaced by n2, and vice versa.
The following example shows how (�C) models an actor
determining a piece of information by reasoning about its
contents:

Example 6 Consider knowledge base

Ca = {H({id, age})|η1, id|η2, age|η3},
where id|η1 .= id|η2 and age|η1 .= age|η3. Intuitively, an actor
can learn id|η1 from this knowledge base: he can construct the
hash H({id|η2, age|η3}), note that it has the same contents as
H({id, age})|η1, and thus infer that id|η1 must have the same
contents as id|η2, which he knows.

This series of reasoning step is captured in the deriva-
tion shown in Fig. 7. Namely, Ca � H({id, age})|η1 holds,
and by (�CC), (�CH) we have Ca � H({id|η2, age|η3}).
By Definition 6, the pair (H({id, age})|η1,H({id|η2, age|η3}))
is evidence for id|η1 .= id|η2 (as well as for age|η1 .= age|η3).
By (�C), he can then deduce id|η1. (In the same way, also
Ca � age|η1 follows).

3.2.2 Inference rules for non-standard primitives

We now discuss the inference rules for the non-standard prim-
itives modelled in this paper. Labelled asymmetric encryp-
tion is similar to normal asymmetric encryption; note that
the label can be derived from the encryption (�EL’), but to
change it, the plaintext is needed, i.e. the label is unmodi-
fiably attached. To derive a session key using authenticated
key agreement, an actor needs to know one of the private
keys used, the other public key, and both parties’ random-
ness (�CG), (�CG’).

Messages ZK(. . .) and ICred∗∗(. . .) represent the complete
transcripts of instances of zero-knowledge proofs and creden-
tial issuing protocols, respectively. In particular, the construc-
tion rules for these messages state which inputs are required
to build the complete transcript (When such a protocol is
run, two different parties each provide part of the input; this
is captured by traces, see Sect. 4).

The inference rules for ZK given in our deductive system
model the privacy aspects of a large family of ZK proofs
known as “
-protocols” [41]. 
-protocols exist for many
properties; in particular, they are used to prove properties of
anonymous credentials [8]. The randomness for
-protocols
is of the form {np,nv}, representing contributions by the
prover and verifier, respectively. Apart from the usual con-
struction rule, there are three elimination rules: (�EZ1) states
that the property proven by a ZK proof can be seen from
its transcript; (�EZ2) states that the prover’s secret can be
derived from the prover’s randomness; and (�EZ3) states that
the public information can be derived. Testing rule (�TZ1)

can be applied to obtain the prover’s randomness. We assume
that parties do not reuse their randomness; also, because we
are only interested in privacy aspects, we only consider deriv-
ing randomness if that randomness can be used to derive

Fig. 7 Derivation of id|η1 given knowledge base Ca = {H({id, age})|η1, id|η2, age|η3} (see Example 6)
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other information. See “Zero-knowledge proofs” section of
Appendix for details.

The inference rules for cred and ICred model anonymous
credentials and their issuing protocol based on SRSA-CL sig-
natures [8]. Anonymous credentials can be verified to corre-
spond to a given verification key, message and secret identi-
fier (�TR). Anonymous credentials are usually derived from
the transcript of its issuing protocol (�EI1) by the user (the
issuer does not know n2 and so does not learn the creden-
tial); but they can also be constructed directly from its com-
ponents (�CR). Similarly for the issuing protocol transcript
itself (�CI). Before the issuing protocol takes place, the user
needs to have sent a randomised commitment H(m1,n1) to
her secret identifier to the issuer. During the protocol, addi-
tional randomness n2, . . . ,n8 is generated by the two parties;
n1, . . . ,n8 together form the randomness component of the
ICred primitive. Inference rules (�EI2) and (�EI3)model the
inference of secret information from the transcript using ran-
domness. A credential issuing protocol transcript allows for
deriving and testing of various nonces and information used
((�EI4); (�TI1)–(�TI5)). As with our model of ZK proofs,
we only consider rules needed to infer personal information
and assume non-reuse of randomness. In “Anonymous cre-
dentials and issuing” section of Appendix, we explain why
these rules accurately capture privacy aspects.

3.2.3 Associability and view

Having discussed detectability, we consider the other part of
an actor view: associability. We determine the associability
relation corresponding to a knowledge base C by finding out
which identifiers and entities are known to be equivalent in C:

Definition 7 Let C be a knowledge base. The associability
relation ↔ corresponding to C is the equivalence relation on
Oc obtained by evaluating the following rules:

1. For all ds|ηk , ds|ζl ∈ C ∩ Ec: if σ(ds|ηk ) = σ(ds|ζl ), then

ds|ηk ↔ ds|ζl ;
2. For all x |ηk , y|ηk ∈ Oc: x |ηk ↔ y|ηk ;
3. If C � m1, C � m2, and (m1

.= m2) ⇒ (i1
.= i2) for

i1, i2 ∈ Ic, then i1 ↔ i2.

and taking the reflexive, symmetric, transitive closure.

The first point states that any known context entities rep-
resenting the same entity can be associated; the second point
states that all information from the same context can be asso-
ciated. The third point captures associations by identifiers.
Actors do not need to be able to detect the identifier: instead, it
is sufficient to detect evidence for content equivalence (Defi-
nition 6). The following example demonstrates the definition.

Example 7 We determine the associability relation ↔cli cor-
responding to the knowledge base Ccli from Example 4:

Ccli = {ds|ab
12, teln|ab

12 , ds|ab
4 , id|ab

4 , skey|··, i p|·me, i p|·srv,

pk(k−|·srv), i p|πcl , i p|πsrv, E ′
shkey|·(id|su)|π ,

E ′
shkey|·({age|su, n|·, Sk−|srv

({age|su, n|·})})|π }.

Rule 2 from Definition 7 allows association of information
from the same context; thus, e.g. ds|ab

4 ↔cli id|ab
4 . Rule

3 allows association of context identifiers using evidence
of content equivalence. For instance, clearly, Ccli � id|ab

4 ,
Ccli � id|πsu (see Example 5), and (id|ab

4
.= id|πsu) ⇒

(id|ab
4

.= id|πsu), hence id|ab
4 ↔ id|πsu . In fact, all context

items about Alice that occur in Ccli turn out to be mutu-
ally associable. However, rule 1 for associating entities does
not apply since, e.g. σ(ds|ab

12) �= σ(ds|ab
4 ). Continuing in

this way, the items detectable from Ccli form the following
equivalence classes under ↔cli :

{ds|ab
12, teln|ab

12} {ds|ab
4 , id|ab

4 , id|πsu, age|πsu}
{i p|πcl , i p|·me, } {i p|·srv, k−|·srv, i p|πsrv, k−|πsrv},

with data subjects Bob, Alice, the client, and the server,
respectively.

Note that ↔ is intentionally defined on all context-layer
items, and not just on detectable context-layer items. The
following example shows how this broader definition allows
additional inferences to be made:

Example 8 Let Ca = {{Eshakey|·(id|1), d|1}|η, {Eshakey|·
(id|1), d ′|1}|χ } be a knowledge base, where shakey|η· .=
shakey|χ· and id|η1 .= id|χ1 . Let ↔a be the associability rela-
tion corresponding to Ca . Intuitively, even if the key used in
the encryptions in Ca is unknown, the fact that they have the
same contents means that the two identifiers, and hence also
the two data items d|η1, d ′|χ1 , must have the same data subject.
Indeed, because

(Eshakey|·(id|1)|η .= Eshakey|·(id|1)|χ ) ⇒ (id|η1 .= id|χ1 ),
rule 3 from Definition 7 gives id|η1 ↔a id|χ1 ; by rule 2 and
transitivity, d|η1 ↔a d ′|χ1 .

We can now define the view corresponding to a knowledge
base:

Definition 8 Let C a knowledge base. The view V corre-
sponding to C is the view V = (O,↔), where O = {p ∈
Ic ∪ Dc | C � p} ∪ (C ∩ Ec), and ↔ is as in Definition 7.

Example 9 We determine the view Vcli = (Ocli ,↔cli ) cor-
responding to the knowledge base Ccli from Example 4. First,
let us consider the view of the client on Alice and Bob. On
Alice, we have id|πsu ∈ Ocli because Ccli � id|πsu , as shown
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in Example 5. Similarly, ds|ab
4 , id|ab

4 , age|πsu ∈ Ocli , and as
we saw in Example 7, they are mutually associable. On Bob,
the two items ds|ab

12 and teln|ab
12 are detectable and associable.

In fact, the client’s view on Alice and Bob is as in Fig. 3.
Apart from this, the client’s view also contains knowl-

edge about the client and server. Namely, in both cases, it
contains two associable context-layer representations of the
communication address: i p|·me, i p|πcl ∈ Ocli on the client,
and i p|·srv, i p|πsrv ∈ Ocli on the server.

3.3 Deciding detectability and linkability

In this section, we present the algorithms to decide detectabil-
ity and linkability used in our tool. Our tool consists of a
series of Prolog scripts2 for the automatic verification of pri-
vacy requirements for a set of architectures. The most tech-
nically challenging part of this task is to compute the views
of actors (i.e. the sets of detectable items and associability
relations) from their knowledge bases. Here, we describe our
algorithms and their efficiency in general terms; for details,
refer to the documentation of the implementation.

Our deductive system is essentially a traditional deduc-
tive system [37,49] to which testing rules and the content
analysis rule have been added. Let us first ignore content
analysis and only consider the construction, testing and elim-
ination rules. Construction rules generally derive messages
from submessages; testing and elimination rules derive sub-
messages from messages using some “additional prerequi-
sites” [e.g. the key for the decryption rule (�EE)]. As test-
ing/elimination and construction cancel each other out, there
is no point in applying testing/elimination to the result of
construction rule. Thus, to check the derivability of a mes-
sage m, we try to find a message n in which it occurs as
submessage and try to derive m from it using elimination
and testing. If this does not work, we repeat the procedure
for m’s submessages: if successful, then m can be obtained
from them with a construction rule.

While trying elimination or testing rules, we need to check
the derivability of the additional prerequisites n. We claim
that this check can be done at the contents layer (so a sim-
ple deductive system suffices). For the testing rule, this is
clear; however, it also holds for elimination rules because
their additional prerequisites can always be obtained from a
content equivalent message using the testing rule.

Thus, in terms of evaluation, our deductive system differs
from standard systems in two ways. First, for elimination
rules, the additional prerequisites are evaluated not using the
deductive system itself, but using a (standard) deductive sys-
tem at the contents layer. Second, testing rules are added
which are evaluated in the same way as elimination rules.

2 The implementation, along with its documentation, can be down-
loaded at http://www.mobiman.me/publications/downloads/.

Intuitively, our deductive system is thus not much harder
to evaluate than a corresponding standard deductive system.
(However, typically it will be run on a larger message set
because information has multiple representations).

We now turn our implementation of the deductive system
without content analysis into an implementation of the full
deductive system. Note that any deduction in the full deduc-
tive system can be transformed into a deduction deriving the
same message satisfying the following conditions:

– After content analysis rules, no other rules are applied to
a message

– In any application of (�C), the message n2 and the mes-
sage n1 from which it is derived only differ by one context
item at one position

– In any application of (�C), the messages m1 and m2 are
derived without content analysis; also, m1 is minimal with
respect to n1 in the sense that no elimination or testing rule
can be applied to it to obtain a submessage containing n1;
and/or n2 is minimal with respect to m2.

The algorithm in Fig. 8 is an imperative translation of our Pro-
log implementation; by the above properties, it implements
derivability in our full deductive system. Namely, to derive
m from a given knowledge base Ca , it takes all messages
m′ .= m such that Ca � m′ and tries to obtain m′ from m by
content analysis in a context-item-by-context-item fashion.
For all positions z at which m and m′ differ, the algorithm
performs a breadth-first search for messages obtained from
m by content analysis at position z, until it finds m with m@z
replaced by m′@z. The breadth-first search is performed by
first searching for a minimal message using testing and elim-
ination rules (lines 10 and 13); and then searching for a con-
tent equivalent message using testing, elimination and con-
struction rules (lines 11 and 14). We did not optimise this
algorithm in terms of complexity. Indeed, in practice, most
context items are content equivalent only to few other items,
so the search space for the algorithm is very limited.

The algorithm for checking the associability of two con-
texts is similar to the previous algorithm. In particular, it starts
with one context (η, k) and uses breadth-first search to find
associable contexts. This involves finding all identifiers and
entities that occur in (η, k) and all other contexts in which
that identifier/entity occurs. The algorithm then searches evi-
dence for content equivalence of the different representations
of the identifier/entity.

4 States, traces, and system evolution

In this section, we complete our formal framework for the
analysis of data minimisation by modelling communication
in an information system. In Sect. 3, we showed how to
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Fig. 8 Algorithm
implementing the deductive
system: given knowledge base
Ca and context message m,
check whether Ca � m

determine what knowledge of personal information actors
have given their knowledge bases. In this section, we show
how these knowledge bases, collected in a state, can be
derived from a model of exchanged messages given as traces
(The approach of our framework is to model messages based
on protocol descriptions. In an alternative type of analysis, the
knowledge base of an actor could be derived from commu-
nication logs and then analysed using the methods presented
in Sect. 3).

A state collects the knowledge of all actors in an informa-
tion system at a certain point in time. Each actor has his own
knowledge base. The knowledge about personal information
by an actor, captured by his view, follows from his knowledge
base. The knowledge of coalitions of actors follows from the
union of their respective knowledge bases:

Definition 9 Let A be a set of actors and I an information
model.

– A state of I involving A is a collection {Cx }x∈A of knowl-
edge bases about I .

– The view of actor a ∈ A in state {Cx }x∈A is the view
corresponding to knowledge base Ca (Definition 8).

– The view of coalition {a1, . . . , ak} ⊂ A of actors in state
{Cx }x∈A is the view corresponding to knowledge base
Ca1 ∪ · · · ∪ Cak .

We assume that information model I is fixed. That is, changes
in knowledge during the system evolution are modelled by
different states of the same information model I .

A trace is a series of communication steps. Each commu-
nication step is modelled by a message transmission involv-

ing two parties that both use a particular communication
address modelled as a context identifier. We consider three
types of message transmissions. The simplest type (1) cap-
tures an actor using address a to send a message m to another
actor using address b. Two other types model the execution of
cryptographic protocols: type (2) denotes a zero-knowledge
proof with prover using address a and verifier using address
b; type (3) denotes a credential issuing protocol with user a
and issuer b.

Definition 10 A message transmission is of one of the fol-
lowing three types:

(1) a → b : m; (2)a �→ b : ZK(m1; m2; m3; m4);
(3)a �→ b : ICredm1

m2(m3; m4),

with a,b context identifiers, and mi context messages.

Definition 11 A trace T is a sequence t1; · · · ; tk of message
transmissions.

States evolve by traces so that the actors involved learn
the messages exchanged:

Definition 12 An evolution from state {C0
x }x∈A into state

{Ck
x }x∈A by trace t1; · · · ; tk is a series of steps (let ti =

ai → bi : mi or ti = ai �→ bi : mi ):

{C0
x }x∈A

t1→ {C1
x }x∈A

t2→ · · · tn→ {Cn
x }x∈A,

where for every actor z ∈ A, Ci
z = Ci−1

z ∪ {ai ,bi ,mi } if
z ↔ σ(ai ) or z ↔ σ(bi ), and Ci

z = Ci−1
z otherwise.

The following example demonstrates traces, states, and
message transmissions.
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Example 10 Consider again the PI model from Example 1,
extended into an information model in Example 4. We model
a complete system evolution as a trace executed from an
initial state.

We are interested in the knowledge of two actors A =
{cli, srv}: the client and server. The initial state {C0

x }x∈A
consists of initial knowledge of the client and server. As dis-
cussed before, this needs to include all used communication
addresses and keys. As in Example 4, for the client we take:

C0
cli = {ds|ab

12 , teln|ab
12 , ds|ab

4 , id|ab
4 , skey|··, i p|·me,

i p|·srv,pk(k−|·srv)}.

Similarly, for the server we define:

C0
srv = {key|db

1 , col1|db
1 , col1|db

2 , key|db
2 , n|··, skey|··, i p|·srv,

k−|·srv}.

(n|·· is the nonce from the server’s reply). The communica-
tion described in Example 4 is now formalised by trace t

consisting of the following message transmissions:

i p|·cli → i p|·srv : E ′
shkey|·(id|su)|π ;

i p|·srv → i p|·cli : E ′
shkey|·({age|su, n|·,

Sk−|srv
({age|su, n|·})})|π .

Then, state {C0
x }x∈A evolves by t into state {Cx }x∈A, where:

Csrv = C0
srv ∪ {i p|πcli , i p|πsrv, E ′

shkey|·(id|su)|π ,
E ′

shkey|·({age|su, n|·, Sk−|srv
({age|su, n|·})})|π },

Ccli = C0
cli ∪ {i p|πcli , i p|πsrv, E ′

shkey|·(id|su)|π ,
E ′

shkey|·({age|su, n|·, Sk−|srv
({age|su, n|·})})|π }.

Note that Ccli is as in Example 4. The views of cli , srv and
the coalition {cli, srv} about Alice and Bob in this state are
as shown in Fig. 3.

5 Case study: privacy in identity management systems

Having described our privacy comparison framework, we
now introduce a case study to demonstrate its operation. In
Sects. 2–4, we have presented the various formalisms needed
to perform the four steps of our privacy comparison frame-
work (Fig. 1). In the case study, we will demonstrate these
four steps by comparing the data minimisation characteris-
tics of several identity management (IdM) systems. In this
section, we introduce the case study. First, we provide an
overview of IdM systems (Sect. 5.1). Then, we discuss the
requirements related to privacy by data minimisation that are

relevant for IdM systems (Sect. 5.2); and present the four
IdM systems we analyse (Sect. 5.3).

5.1 Identity management systems

As providers of online services are offering more and more
customisation to their users, they need to collect more and
more of their personal information. Traditionally, each ser-
vice provider would manage the accounts of users sepa-
rately. However, this identity management model, called the
isolated user identity management model [57], has disad-
vantages for both users and service providers: the user has
to manually provide and update her information and keep
authentication tokens for each service provider, whereas it
is hard for the service provider to obtain guarantees that the
information given by the user is correct.

This problem is commonly addressed using an Identity
Management (IdM) System. Intuitively, the task of managing
and endorsing identity information is delegated to identity
providers. Identity management is split up in two phases: reg-
istration and service provision. At registration, users estab-
lish accounts at (possibly multiple) identity providers (This
includes identification: i.e. the user transfers her attributes
to the identity provider, and the identity provider possibly
checks them. However, both the transfer and checking of
attributes performed by the identity provider are out of scope
of this work). Service provision is the phase when a user
requests a service from a service provider: at this point, user
attributes required for the service provision need to be col-
lected and sent to the service provider.

IdM systems can be divided into two main categories [11]
depending on whether or not the identity providers are
involved in the service provision phase: credential-focused
and relationship-focused systems (also know as network-
based and claim-based systems [3]). Figure 9 show a tax-
onomy of IdM systems.

In credential-focused IdM systems, the user gets long-
term credentials from the identity provider in the registration
phase that she can directly present to the service providers
in the service provision phase. These credentials contain her
identity attributes. We can distinguish between two mech-
anisms employed to prevent the user from tampering with
them, namely cryptography and tamper-resistant devices.
Credential-focused systems relying on cryptography include
CardSpace [72], U-Prove [75], and Identity Mixer [8]. The

Fig. 9 Taxonomy of IdM systems
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system presented in [100] relies on the use of a smartcard as
a tamper-resistant device.

In relationship-focused IdM systems, in contrast, identity
providers present the attributes to service providers. Dur-
ing the registration phase, identity providers establish shared
identifiers to refer to each other’s identity of the user. Dur-
ing the service provision phase, the user authenticates to an
identity provider. The identity provider then sends attributes
to the service provider (possibly indirectly via the user). If
needed, the shared identifiers established during registration
are used to collect (or aggregate [31]) attributes held by other
identity providers without the user having to authenticate to
them as well. The combination of reliance on authentication
performed by another party and exchange of identity infor-
mation is sometimes referred to as federated identity man-
agement [57,87] (Note that this term is also used to describe
the general concept of sharing information between different
domains [3] or the mere use of multiple identity providers [1].
To avoid confusion, we will not use it further). Relationship-
focused systems include Liberty Alliance [54], Shibboleth
[47], and the linking service model [31].

Because in IdM systems, large amounts of personal infor-
mation are processed by many different parties, privacy has
become a major concern [53,90]. In such systems, privacy
threats posed by authorised insiders are nowadays considered
to be a critical problem besides outsider attacks on crypto-
graphic protocols [52]. Insiders may compile comprehensive
user profiles to sell or use for secondary purposes such as
marketing. These profiles can include sensitive information
that is explicitly transferred by the user, but also informa-
tion that is transferred implicitly [90]. For instance, the mere
fact that a user performed a transaction at a certain service
provider may be privacy sensitive. In addition, profiles held
by different parties may be combined [90] to compile even
more comprehensive profiles. Privacy-enhancing IdM sys-
tems (e.g. [8,31,100]) aim to minimise the amount of infor-
mation disclosed as well as prevent that different pieces of
information can be linked together [53].

5.2 Requirements

We now present a set of privacy requirements for IdM sys-
tems. We have elicited these requirements by analysing the
information that actors can learn; considering which of this
knowledge should be avoided; and systematically grouping
this knowledge into requirements according to what kind of
knowledge it is, and who should or should not learn it. We
validate our set of requirements in two different ways. First,
we check if they cover relevant privacy requirements dis-
cussed in the literature. For this, we have studied taxonomies
of privacy in identity management [11,53] and the propos-
als for the identity management systems analysed in this
paper [8,31,100], and verified if all requirements discussed

in these works are covered by our requirements. Second, we
check if they cover all possible situations expressible in our
model that can lead to privacy risks. For this, we have sys-
tematically considered all elementary detectability, linkabil-
ity, and involvement requirements expressible in our model,
checked which of these can lead to privacy risks, and verified
that the relevant ones are covered by our requirements.

Table 2 lists our privacy requirements, also showing in
which existing works they are discussed. We first present our
requirements, then discuss if they cover all relevant require-
ments from the literature mentioned above. The analysis of
coverage of situations expressible in our model is presented
in Sect. 6.2.

The basic functional requirement for IdM systems is
that the service provider learns the attributes it needs [12]:
attribute exchange (AX). Note that in one service provision,
a service provider may need attributes from several identity
providers.

Privacy requirements cover that certain personal infor-
mation should not be learned by certain actors. Privacy by
data minimisation attempts to minimise the amount of infor-
mation learned, and the extent to which it can be linked
together [53]. The first aspect, information learned, can
be further divided into explicitly and implicitly transferred
information [90]. Detectability requirements capture explic-
itly transferred information: information about the user’s
attributes. Involvement requirements capture information
about whether actors know about each other’s involvement
with the user: a kind of implicitly transferred personal infor-
mation. The second aspect is captured in linkability require-
ments: namely, requirements that (combinations of) parties
should be able to link personal information from different
sessions, databases, etc., as little as possible.

We define three detectability requirements. The first is
about the service provider learning no more than strictly nec-
essary: no attribute that he does not need to know (irrelevant
attribute undetectability, SID), and no complete attribute
value if all he needs to know is whether or not an attribute sat-
isfies a certain property [8] (property-attribute undetectabil-
ity, SPD). These properties limit the user profile a service
provider can construct. In addition, IdM systems should guar-
antee that identity providers do not learn any value or prop-
erty of attributes stored at other identity providers: we call
this requirement IdP attribute undetectability (ID).

Involvement requirements address the fact that the mere
interaction of a user with certain identity or service providers
implies a business relation which can be privacy sensitive.
For instance, ownership of credentials can be sensitive [86]
in domains such as healthcare, insurance, or finance. In addi-
tion, even if individual credentials are not sensitive, the pre-
cise combination of credentials held by a user may help iden-
tify her. It is natural in identity management that the service
provider learns which identity providers certify the user’s
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Table 2 Requirements for IdM systems

Description References

Functional requirements

Attribute exchange (AX) The service provider learns the value of the required
attributes/properties of the user requesting the service

[8,12,31,77,100]

Privacy requirements

Irrelevant attribute undetectability (SID) The service provider does not learn anything about
attribute values irrelevant to the transaction

[8,12,77,100]

Property-attribute undetectability (SPD) The service provider does not learn anything about
attributes apart from the properties he needs to know

[8,12,77,100]

IdP attribute undetectability (ID) Identity providers do not learn anything about the user’s
attributes from other identity providers

–

Mutual IdP involvement undetectability (IM) One identity provider does not learn whether a given
user also has an account at another identity provider

[31]

IdP-SP involvement undetectability (ISM) Identity providers do not learn which service providers a
user uses

–

Session unlinkability (SL) A service provider cannot link different sessions of the
same user

[8,12,31,53,100]

IdP service access unlinkability (IL) Identity providers cannot link service access to the user
profile they manage

[53]

IdP profile unlinkability (IIL) Collaborating identity providers cannot link user profiles [53,100]

IdP-SP unlinkability (ISL) Identity providers and service provider cannot link
service accesses to user profile at identity provider

[8,53,100]

Accountability requirements

Anonymity revocation (AR) Service provider and identity providers (possibly with
help from trusted third party) can reconstruct link
between service access and user profile

[8,12,53,100]

attributes: this allows him to judge their correctness. How-
ever, one can aim to achieve that identity providers do not
know the identity of other identity providers the user has an
account at [31]: we define this as mutual IdP involvement
undetectability (IM). In the same way, a user might want to
keep hidden from her identity providers the fact that she inter-
acts with a certain service provider: we call this requirement
IdP-SP involvement undetectability (ISM).

Linkability is another fundamental privacy concern
because it determines what user profiles can be constructed
from the data that is collected [79]. To prevent a service
provider from accumulating (behavioural) information, an
IdM system should ensure it cannot link different service pro-
visions to the same user: session unlinkability (SL). Indeed,
in many cases, the service provider does not need to know
the identity of the user: for instance, if a user wishes to read
an online article, the only information that is required is that
she has a valid subscription.

Another concern is that parties can build more compre-
hensive user profiles by sharing their personal information.
To prevent this, they should not know which profiles are
about the same user [53]. A very strong privacy guarantee
in this vein is that identity providers and service providers
cannot link service provisions to the user: IdP-SP unlinkabil-
ity (ISL). IdP profile unlinkability (IIL) is a weaker privacy
guarantee requiring that two collaborating identity providers
(without help from the service provider) cannot link their

profiles. IdP service access unlinkability (IL) is about the
link between a service provision and the user profile at an
identity provider, thus measuring whether identity providers
are aware of individual service provisions.

An accountability requirement counterbalances the pri-
vacy guaranteed by the ISL requirement. Namely, if the user
misbehaves, it should be possible to identify her [8]. Several
IdM systems [8,100] introduce a trusted third party that, in
such cases, can help with the identification. The anonymity
revocation (AR) requirement states that, possibly with the
help of this trusted third party, the service provider and iden-
tity providers are able to revoke the anonymity of a trans-
action. (Note that in particular, AR also holds if the service
provider and identity providers can revoke anonymity with-
out needing the trusted third party.)

When comparing our requirements to those found in
existing taxonomies [12,53], we find that our requirements
are generally more detailed. In [12], three requirement on
data minimisation are presented: conditional release, selec-
tive disclosure, and unlinkability. These three requirements
correspond to anonymity revocation and IdP-SP unlinkabil-
ity; irrelevant attribute and property-attribute undetectability;
and session unlinkability, respectively (for selective disclo-
sure, the authors do not distinguish between attributes and
properties). The authors also mention policy support, which
we do not cover. On the other hand, our other requirements are
not addressed. In [53], “user-controlled linkage of personal
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data” is mentioned as the underlying principle of privacy-
enhancing identity management. This includes our unlinka-
bility properties (although [53] does not identify them sep-
arately), but also a “control” aspect of privacy which we do
not cover. The authors of [53] also stress that the desired
degree of linkability depends on the application, mentioning
revocation in particular.

As shown in the table, many of our requirements are dis-
cussed by designers of IdM systems [8,31,100]. We compare
our requirements to those claimed by designers (including
the ones we do not cover) when discussing these systems in
Sect. 5.3.

5.3 Four systems

We now present the four IdM systems we formally analyse.
We consider one traditional system, smart certificates [77],
for whose development privacy was not a primary concern;
it can be classified as credential-focused and relying on cryp-
tography. We then consider three systems designed with pri-
vacy in mind: the linking service model [31], a relationship-
focused IdM system; Identity Mixer [8], a credential-focused
system relying on cryptographic protocols; and a credential-
focused IdM system based on smartcards [100] we will refer
to as the Smartcard scheme.

For our analysis, we aimed to cover differ kinds of IdM
systems that exist in the literature. In particular, this means
selecting credential-focused and relationship-focused sys-
tems [3,12]. For the former type, Identity Mixer has received
a lot of attention in the research community. For the lat-
ter type, the linking service is one of few proposals sup-
porting multiple identity providers that takes privacy into
account [31]. We then also included the smartcard scheme
because it is a recent proposal in a completely different direc-
tion than the previous two. Of course, our formal results are
about these particular systems; however, when analysing the
results, we will also informally discuss to what extent they
generalise to similar systems.

We now briefly discuss these systems and the privacy guar-
antees that they have been designed to provide.

5.3.1 Smart certificates

Park et al. [77] proposed an IdM system built on top of a Pub-
lic Key Infrastructure (PKI). In a PKI, a certificate author-
ity (CA) issues certificates stating that a certain public key
belongs to a certain user. A user authenticates by proving
knowledge of the secret key corresponding to this public
key. Identity providers issue certificates that link attributes
to the public key certificate. In our analysis, we consider one
particular variant described in [77]: the user-pull model with
long-lived certificates obtained during registration.

(a) (b)

Fig. 10 Smart certificates. a Registration phase. b Service provision
phase

The flow of information is summarised in Fig. 10. In the
registration phase (Fig. 10a), the user gets an attribute cer-
tificate from an identity provider (the “attribute server” in
[77]), which enables her to present her attributes to others.
This involves three steps: (1) the user presents her public
key certificate; (2) she proves that she also knows the corre-
sponding secret key (this is an interactive protocol shown as
a two-sided arrow in the figure); and (3) the attribute server
issues an attribute certificate. The process is then repeated
with other identity providers [steps (4) to (6)]. The attributes
in the certificate are signed using the attribute server’s secret
key and hence cannot be tampered with by the user. During
service provision (Fig. 10b), the user exchanges attributes
with the service provider (“web server”) in two steps: (1)
she presents her public key certificate and the attribute cer-
tificates containing the attributes needed; and (2) she proves
knowledge of the corresponding secret key.

The system presented in [77] is mainly designed to sat-
isfy the attribute exchange requirement (AX) in a secure way
(“the attributes of individual users are provided securely”).
Privacy concerns are addressed in an extension of the sys-
tem in which some attributes in a credential are encrypted in
such a way that they can only be read by an “appropriate”
server, corresponding to our SID/SPD properties. However,
we will consider the original scheme in which SID/SPD are
not claimed to hold.

5.3.2 Linking service model

The linking service model [31] is a relationship-focused
IdM system. Its main goal is to facilitate the collection of
user attributes from different identity providers in a privacy
friendly way without the user having to authenticate to each
identity provider separately. To this end, this model includes
a linking service which is responsible for holding the links
between profiles of the user at the different identity providers
without knowing any personal information about the user.

The flow of information is summarised in Fig. 11. During
registration (Fig. 11a), the user first creates an anonymous
account at the linking service LS. LS requests the identity
providers to authenticate the user; each identity provider gen-
erates a pseudonym for the user and sends it to LS [steps (1)
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(a) (b)

Fig. 11 Linking service model. a Registration phase. b Service provi-
sion phase

(a) (b)

Fig. 12 Identity Mixer. a Registration phase. b Service provision phase

and (2)] (The specific method of authentication between the
user and the identity providers and linking service is out of
our scope). In the service provision phase (Fig. 11b), the
user authenticates to one particular identity provider IdP1.
IdP1 provides the service provider SP with an “authentica-
tion assertion” containing the attributes requested from it
and a referral to LS (1). The referral is an encryption of the
pseudonym shared between IdP1 and LS that only LS can
decrypt. SP sends this referral to LS (2), which responds
by sending a similar referral to other identity providers (3).
Finally, SP requests (4) and obtains (5) the required attributes
from the other identity providers (for simplicity, we just show
one other identity provider in the figure).

The linking service model aims to satisfy the attribute
exchange requirement (AX) as well as a number of privacy
requirements [31]. In particular, the main goal of the link-
ing service model is to guarantee that identity providers do
not know the involvement of other identity providers (IM).
Moreover, the model aims to achieve session unlinkability
(SL) through the use of random user identifiers. Finally, the
linking service should not learn the partial identities of the
user for the service providers; that is, it does not learn any
personal information about the user. We call this requirement
LS attribute undetectability (LD); it is not listed in Table 2
because it is only relevant for this system; however, our analy-
sis will include the verification of this requirement.

5.3.3 Identity mixer

Identity Mixer [8] is a credential-focused IdM system using a
cryptographic primitive called anonymous credentials. These
credentials link attributes to a user identifier, but are issued

by identity providers and shown to service providers using
protocols ensuring that neither party learns that identifier.
Thus, nobody but the user knows whether different issuing
or showing protocols were performed by the same user, while
integrity of the attributes is still assured.

Figure 12 shows the information flows in Identity Mixer.
During registration (Fig. 12a), the user first sends a commit-
ment to her (secret) identifier to an identity provider IdP1

(1), after which the user and IdP1 together run the credential
issuing protocol (2). From this, the user obtains a creden-
tial with her attributes linked to her secret identifier, with-
out IdP1 learning the identifier. Communication with other
identity providers is analogous [steps (3) and (4)]. In the
service provision phase (Fig. 12b), the user shows informa-
tion from several credentials to the service provider SP. She
first shows her credential from one identity provider. To this
end, she sends a message containing the attributes she wants
to reveal and “commitments” to the secret identifier and all
other attributes (1). Next, she performs a zero-knowledge
proof (2) which proves to SP that the attributes and commit-
ments come from a valid credential issued by the identity
provider, while revealing nothing else about the credential.
Credentials issued by other identity providers are shown in
the same way [steps (3) and (4)].

Identity Mixer is designed to satisfy a number of privacy
requirements [8]. In particular, it aims to satisfy both ses-
sion unlinkability and IdP/SP unlinkability (together called
“multi-show unlinkability” in [8]) and irrelevant attribute and
property-attribute undetectability (together called “selective
show of data items” in [8]). The system allows for providing
the service provider with an encryption of some attributes for
a trusted third party (“conditional showing of data items” in
[8]) that can be used for anonymity revocation. Apart from the
data minimisation requirements we defined, the system addi-
tionally allows credential issuing where an identity provider
copies attributes from another certificate without knowing
their values (“blind certification” in [8]). The main motiva-
tion for this functionality comes from the use of these cer-
tificates for e-cash [8]. In traditional identity management
scenarios, such as ours, identity providers should know the
attributes they endorse, so we do not consider this require-
ment in this work.

5.3.4 Smartcard scheme

Vossaert et al. [100] proposed a credential-focused IdM sys-
tem which relies on PKI for authentication and on smartcards
(or other tamper-resistant devices) to ensure that attributes are
not modified and observed during their transmission from the
identity provider to the service provider. Identity providers
and service providers only communicate via the smartcard,
and each has a different pseudonym of the user based on a
secret user identifier stored on the smartcard.
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(a) (b)

Fig. 13 Smartcard scheme. a Registration phase. b Service provision
phase

The information flow defined in the scheme is shown in
Fig. 13. In the registration phase (Fig. 13a), the smartcard SC
and the first identity provider IdP1 establish a secure, authen-
ticated channel using a key agreement protocol [steps (1) and
(2)]. Over this secure channel, SC sends a pseudonym based
on its secret identifier specific for IdP1 (3); IdP1 sends its
attributes (4). Registration at other identity providers is simi-
lar [steps (5) to (8)]. In a service provision (Fig. 13b), SC and
service provider SP establish a secure, authenticated channel
as in the registration phase [steps (1) and (2)]. SC gener-
ates a random session identifier (3); SP then specifies what
attributes he wants, and how long they may have been cached
[steps (4) and (5)]. SC responds by giving the requested
attributes. For anonymity revocation purposes, this response
also includes Alice’s identifier encrypted for the trusted third
party (6).

The system is designed to meet several requirements
related to the knowledge of personal information [100]. The
requirements specified correspond to our notions of attribute
exchange, session unlinkability, and anonymity revocation.
Irrelevant property and property-attribute undetectability fol-
low from their more general notion of “restricting released
personal data”. The Smartcard scheme also aims to fulfil IdP
profile unlinkability and IdP/SP unlinkability by preventing
collusion of identity and service providers.

5.3.5 Privacy requirements claimed by systems

Table 3 summarises the privacy claims for the systems. One
goal of our formal analysis will be to verify whether these
claims actually hold. In addition, we will analyse the sys-
tems against the complete range of identified requirements
in order to achieve a comprehensive comparison of their pri-
vacy features.

6 Formal analysis of the case study

In this section, we formally analyse and compare the IdM
systems presented in the previous section. To make this com-
parison, we perform the four steps of our privacy analysis

framework (Fig. 1). In Sect. 6.1, we model the personal infor-
mation in a scenario (step 1). In Sect. 6.2, we model the
privacy requirements (step 2; we also discuss whether the
requirements identified in Sect. 5.2 cover all privacy risks
expressible in our model). In Sect. 6.3, we model the com-
munication in each IdM system (step 3). In Sect. 6.4, we
verify which requirements hold in which system and analyse
the results (step 4).

6.1 Step 1: Model personal information in scenario

Step 1 of our analysis method is to model the personal infor-
mation in a scenario. The scenario needs to be designed in
such a way that all privacy properties to be verified (i.e. in
this case, the ones in Table 2) can be phrased in terms of per-
sonal information occurring in the scenario. Thus, we include
attributes that should be disclosed (for AX), should not be
disclosed (for SPD), and of which only a property should
be disclosed (for SID); and we consider multiple identity
providers (for IM, IL, and IIL) and sessions (for SL). Given
these constraints, we design the scenario to look as realistic
as possible.

In particular, we consider a scenario with four main actors:
a user: Alice, a 65-year-old woman; a service provider: an
e-book store; and two identity providers: one for Alice’s
address (the address provider) and one for Alice’s subscrip-
tion at some society (the subscription provider). In the regis-
tration phase of this scenario, Alice creates an account at both
identity providers. The address provider stores three identity
attributes of the user: the street, city, and age. The subscrip-
tion provider stores two user attributes: date of subscription
and subscription type.

In the service provision phase, Alice purchases books from
the e-book store on two separate occasions. To this end, she
needs to provide her personal information, endorsed by the
identity providers, to the e-book store. The service provider,
for statistical purposes, demands to know the city that Alice
comes from. Moreover, the e-store offers a discount to cus-
tomers that are over 60 years old. As Alice is 65 years old,
she is eligible for the discount. The e-book store, however,
does not necessarily need to learn her exact birth date or age;
Alice can just prove that she is over 60 years old. Moreover,
the e-book store does not need to know that the purchases
are both made by the same user. On the other hand, in case
of abuse, the service provider does want to be able to link
the purchase to Alice’s profile at the address provider with
the help of a trusted third party (Note that the scenario does
not cover the separate issue of anonymous payment of the
e-book).

Our formalisation of this scenario as (views on) a PI
model is shown schematically in Fig. 14. Figure 14a lists
the actors/entities in the system (in this case study, actors
and entities coincide). The trusted third party t tp is included
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Table 3 Comparison of privacy requirements claimed by the various systems

Scheme AX AR SID SPD ID IM ISM SL IL IIL ISL
Smart certificates
Linking service model
Identity Mixer
Smartcard scheme

(a) (b) (c)

(d)

(e)

Fig. 14 Schematic representation of PI model and initial actor views.
a Actors/entities. b Domains. c Profiles. d Information about i i , is, bs,
t tp: anybody knows identifiers and public keys pk(k−|·∗); actor knows
own private key. e Information about Alice: each row is a piece of infor-

mation (for d7 and ip: different pieces of information in each domain);
columns al, i i , is, and bs show the initial knowledge of actors about
the information

because of the anonymity revocation requirement; however,
note that it only occurs in the Identity Mixer and Smartcard
schemes.

Figure 14b, c summarise the contexts we use to model
different representations of personal information. Figure 14b
lists all domains. The “·” domain contains publicly known
identifiers for the identity and service providers, and their pri-
vate keys. The ι, κ , and λ domains represent databases of user
information held by the respective parties. The π , η, ζ , and
ξ domains represent the communication protocols that are
executed during the scenario. For simplicity, all communica-
tion related to one service provision is modelled in a single
domain. This expresses that parties involved in service provi-
sion without communicating directly (e.g. the linking service
and IdP2 in the linking service model) are able to link their
views of the protocol. Alternatively, each pair of commu-

nication partners could have a separate domain. Figure 14c
shows the profiles representing the actors in the different
domains. For instance, in the ·, ι, κ , and λ domains, Alice
represented by the al profile; in the π , η, ζ , and ξ domains,
she is represented by u. By naming these profiles differently,
we emphasise that actors learn the information not as infor-
mation about Alice, but as information about “the purchaser
in transaction x”, etc.

Figure 14d, e define the pieces of personal information in
the scenario, and the knowledge about them that actors hold
in the initial state. For simplicity, we give an explicit context-
layer representation, and use some notational conventions
to implicitly describe the information and contents layers.
Namely, when context items about the same entity using the
same variable are denoted in the normal font (e.g. iii |πu and
iii |κal ), they are equivalent; when denoted in boldface (e.g.
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ip|πu , ip|ηu), they are all pairwise non-equivalent. Items of the
form i |∗∗, i∗|∗∗, k−|∗∗, and i p|∗∗ (for any ∗) are identifiers; items
d∗|∗∗ are data items; other items are non-personal information.
All representations of a single piece of information use the
same variable. Because this scenario includes only one data
subject, all pieces of information have unique contents, i.e.
the information and contents layers coincide. We have one
attribute propertyψ1 representing if an age is over 60. At the
information layer, ψ1(d2) = d2> 60; at the context layer,
ψ1(d2|πu ) = d2> 60|πu , and similarly for other contexts.

Figure 14d defines the information available about i i , is,
and bs. This information consists of a private key for each
of the actors and an identifier for i i , is, and bs. All actors
know each other’s identifiers and the public keys pk(k−|·∗)
corresponding to each private key; each actor also knows his
own private key.

Figure 14e defines the personal information known ini-
tially about Alice. Each row except the last two shows differ-
ent context-layer representations of one piece of information,
indicating which actor initially knows which representation.
For instance, d1 represents a city; Alice knows her city as
d1|ιal and i i knows it as d1|κal . We assume that the actual
attribute exchange between user and identity provider dur-
ing registration has already taken place, as shown in the κ
and μ domains. In the last two rows, each context item rep-
resents a different piece of information; e.g. the transaction
details d7|ζu,d7|ξu of the two service provisions are different.
We assume some initial knowledge about Alice in the π ,
η, ζ , and ξ domains representing protocols. Knowledge of
iii |πu , iis |ηu held by Alice and the respective identity providers
represents the fact that Alice has authenticated to them. In
the context of the two service provisions, Alice knows that
she is the data subject (al|ζu , al|ξu); the service provider knows
transaction details d7|ζu, d7|ξu. Alice knows her own IP address
ip|∗u, where ∗ ∈ {π, η, ζ, ξ}; note that it is assumed to change
dynamically between sessions.

6.2 Step 2: Model privacy requirements

Step 2 of our framework is to formalise the requirements from
Table 2 in terms of actor views. As above, the view of an actor
a ∈ A and a coalition A ⊂ A are denoted Va = (Oa,↔a)

and VA = (OA,↔A), respectively. The formalisation of our
requirements in terms of these views is shown in Table 4. AX
and AR are detectability and linkability requirements (see
Sect. 2.3), respectively. (For AX, note that bs can always
associate the personal information of the user to the pur-
chase because of the common context (ζ, u) or (ξ, u), so we
do not check this.) SID, SPD and SID are undetectability
requirements; SL, IL, IIL, and ISL are unlinkability require-
ments. (Un-)detectability requirements are straightforward
to formalise; e.g. property-attribute undetectability means
undetectability by bs of the context item d2|δp in any con-

text (δ, p). (Un-)linkability requirements translate to con-
texts not being associable by an actor or coalition. IM and
ISM are non-involvement requirements: formally, they trans-
late to two associations that should not hold simultane-
ously; for instance, for IM, there should be no domain p
in which i i can link the idp2 profile to |·idp2 and the u profile
to |κal .

We now analyse whether the above privacy requirements
cover all privacy risks expressible in our model. To this end,
we consider all coalitions and all possible knowledge (in
terms of elementary detectability, involvement, and linka-
bility aspects; see Sect. 2.3); and verify if they represent a
privacy risk, and if so, by which privacy requirement they
are captured. The result is shown in Table 5. The first group
of columns indicates the coalition with respect to which a
requirement is defined; the next groups list the detectability,
involvement, and linkability aspects that it entails.

First consider detectability requirements. With respect to
bs, all personal information is required to be either detectable
by AX or undetectable by SID and SPD (except for d7, which
bs can always detect by definition of the scenario). Similarly,
identity providers can detect attributes they endorse by def-
inition of the scenario, but no others by ID (Undetectability
of endorsed attributes would be a requirement for the blind
certification [8] feature of the Identity Mixer scheme as dis-
cussed in Sect. 5.3.3). There are no detectability requirements
with respect to t tp or about the transaction details d7. In fact,
these aspects would not produce relevant results because t tp
never learns any attributes and bs never communicates any
transaction details.

Involvement requirements do not cover t tp or al: the
involvement of t tp is publicly known, and Alice’s involve-
ment is covered by linkability. For identity providers, there
are involvement requirements about all remaining parties, i.e.
the other identity provider and the service provider. Usually,
service providers assess trustworthiness of user attributes by
considering which identity provider endorsed them; hence
we do not regard involvement requirements with respect to
the service provider as important (Among the analysed sys-
tems, only the Smartcard scheme would satisfy them).

Linkability requirements capture associations by coali-
tions of actors. Clearly, at least i i and is are needed to asso-
ciate κ and μ; IIL states that without help of others, they
cannot. There is no requirement about when bs helps them
with this; as it turns out, this help never makes a difference.
Linkability between user databases and service provisions
is defined with respect to the respective identity providers
and with respect to a coalition of all identity and service
providers. Considering other coalitions would not reveal
interesting differences in the systems we analyse. Similarly,
no requirement involves i i or is in linking the service pro-
visions to each other; in practice, an identity provider would
link service provisions to each other by first linking them
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Table 4 Formalisation of
requirements in our scenario

(m �a n means ¬(m ↔a n);
∗ means for all possible values

Requirement Formalisation

Attribute exchange (AX) d1|ζu , d2>60|ζu , d6|ζu , d1|ξu , d2>60|ξu , d6|ξu ∈ Obs

Anonymity revocation (AR) ∗|κal ↔{bs,i i,is,t tp} ∗|ζu ↔{bs,i i,is,t tp} ∗|ξu
Irrelevant attribute undetectability (SID) d3|∗∗ /∈ Obs ∧ d5|∗∗ /∈ Obs

Property-attribute undetectability (SPD) d2|∗∗ /∈ Obs

IdP attribute undetectability (ID) d1|∗∗ /∈ Ois ∧ d2|∗∗ /∈ Ois ∧ d3|∗∗ /∈ Ois∧
d2>60|∗∗ /∈ Ois ∧ d5|∗∗ /∈ Oi i ∧ d6|∗∗ /∈ Oi i

Mutual IdP involvement undetectability (IM) ¬(∃p : ∗|·is ↔i i ∗|p
idp2 ∧ ∗|p

u ↔i i ∗|κal )∧
¬(∃p : ∗|·i i ↔is ∗|p

idp1 ∧ ∗|p
u ↔is ∗|μal)

IdP-SP involvement undetectability (ISM) ¬(∃p : ∗|·bs ↔i i ∗|p
sp ∧ ∗|p

u ↔i i ∗|κal )∧
¬(∃p : ∗|·bs ↔is ∗|p

sp ∧ ∗|p
u ↔is ∗|μal )

Session unlinkability (SL) ∗|ζu �bs ∗|ξu
IdP service access undetectability (IL) ∗|κal �i i ∗|ζu) ∧ ∗|κal �i i ∗|ξu∧

∗|μal �is ∗|ζu ∧ ∗|μal �is ∗|ξu
IdP profile unlinkability (IIL) ∗|κal �{i i,is} ∗|μal

IdP/SP unlinkability (ISL) ∗|κal �{i i,is,bs} ∗|ζu ∧ ∗|μal �{i i,is,bs} ∗|ζu∧
∗|κal �{i i,is,bs} ∗|ξu ∧ ∗|μal �{i i,is,bs} ∗|ξu

Table 5 Schematic overview of the requirements in Table 4

Requirement Coalition of … �: undetectable w.r.t. coalition
�: detectable w.r.t. coalition

Involvement
unknown

�: unassociable w.r.t. coalition
�: associable w.r.t. coalition

bs ii is t tp d1 d2 d2>60 d3 d5 d6 d7 i i is bs κ, μ κ, ζ κ, ξ μ, ζ μ, ξ ζ, ξ

AX � � � �
SID � � �
SPD � �
ID � � �
ID � � � � �

IM � �
IM � � �
ISM � �
ISM � �

AR � � � � � � �
SL � �
IL � � �
IL � � �
IIL � � �
ISL � � � � � � �
Each row indicates that with respect to the given coalition of actors, (a) the given items should be (un)detectable; (b) the involvement of the given
actors should be unknown; and (c) Alice’s profiles in the given domains should be (un)associable

to its own user profile, which is covered by IL. Finally, AR
requires linking the service provisions to κ and not to μ;
this is an arbitrary choice made in the definition of the sce-
nario.

6.3 Step 3: Model communication in IdM systems

Step 3 of our framework is to model the communication in
the systems we want to analyse (Sect. 5.3). For each system,
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Fig. 15 Formalisation of smart certificates: initial knowledge and trace

this formalisation consists of two parts. First, we define an
initial state {C0

a }a∈A capturing the initial knowledge of all
actors, extending the knowledge from Fig. 14 with respect
to the specific system. Second, we define a trace Scenario
that models the communication that takes place in the sys-
tem in the system from the initial state when registration at
i i , registration at is, and two service provisions at bs, are
consecutively performed.

We introduce the abbreviation MSk−(m) := {m, Sk−(m)}
to denote a message along with its signature, capturing both
X.509 certificates [56] and signed SAML assertions [30].

6.3.1 Smart certificates

Figure 15 displays our formalisation of smart certificates
(Sect. 5.3.1). In addition to the knowledge from Fig. 14, Alice
initially knows her public key certificate

MSk−|·ca
(i |·al ,pk(k−|·u), nc|··)

(nc|·· represents additional information in the certificate such
as the validity date) and the corresponding private key k−|·al .
The other items of initial knowledge are the contributions
nz,∗|∗· to Alice’s proof of knowledge of k−|·al , and additional
information na |π· , nb|η· put in the attribute certificates issued
by i i and is.

Fig. 16 Formalisation of linking service model: initial knowledge and
trace

The messages in the traces Reg1 and Reg2 correspond
to those in Fig. 10a; the messages in the trace ServProv
correspond to those in Fig. 10b. We model the proof that Alice
knows the secret key corresponding to her public key as a ZK
proof with secret information k−|πu and public information
pk(k−|πu ).

6.3.2 Linking service model

Figure 16 displays the formalisation of the linking service
model (Sect. 5.3.2). This system introduces the linking ser-
vice ls as an additional actor: it has an address and a pri-
vate/public key pair. ls and is have publicly known identifiers
i |·ls , i |·is used in the referrals. The user database of ls, mod-
elled by domain ν, contains an entry for the user containing
only the identifier il |νal . User authentication to ls during regis-
tration is modelled by ls’s knowledge of il |πu ; the pseudonyms
generated by the identity providers are modelled as ii1,ls |πu
and ii2,ls |πu . Alice’s authentication at i i during service provi-
sion is modelled by the fact that i i knows the identifiers iii |∗u ,
∗ ∈ {ζ, ξ}.

The registration and service provision phases in the trace
correspond to Fig. 11a, b, respectively. To prove authentic-
ity, the identity providers sign information for bs using their
private key. bs forwards the authentication assertion from i i
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to ls and is to prove that the user has authenticated. The
referrals by i i and is include random nonces n|·, n′|· to
ensure that bs cannot link different sessions by comparing
them.

The linking service model aims to satisfy a privacy
requirement specifically about the linking service, which we
call LS attribute undetectability (LD). We can express this
requirement formally in a similar way to the SID, SPD, and
ID requirements: d1|∗∗ /∈ Ols ∧ · · · ∧ d6|∗∗ /∈ Ols .

The linking service model in general is independent
from message formats. However, the authors also present an
instantiation using the SAML 2.0 [30] and Liberty ID-WSF
2.0 [54] standards. Our model captures that instantiation.

6.3.3 Identity Mixer

The formalisation of the scenario when using Identity Mixer
(Sect. 5.3.3) is shown in Fig. 17. The most notable piece of
initial knowledge is Alice’s secret identifier i |·al . In the trace,
registration follows the steps of Fig. 12a; service provision is
as in Fig. 12b. For our purposes, we can represent the com-
mitment to Alice’s secret identifier in the first message by a
hash H(i |πu , nc1,1|π· ). By inference rule (�EI2), Alice learns
a credential from the issuing protocol linking her attributes
to her secret identifier. For instance, from message (2) she
can derive

cred
i |u
k−|idp1

(iii |u, d1|u, d2|u, d3|u; nc1,2|·, nc1,5|·, nc1,6|·)|π .

Note that this credential contains Alice’s identifier iii |πu as an
additional attribute: it is used later for anonymity revocation.

In the first message of service provision, again we rep-
resent the commitments to Alice’s secret identifier and
attributes by hashes. For anonymity revocation purposes, the
first message additionally includes an encryption of the iden-
tifier iii |πu for the trusted third party, with a condition cnd|·
attached describing when the anonymity of the transaction
may be revoked. The ZK proof in message (2) convinces bs
that:

– Alice owns a credential, signed with i i’s private key;
– the secret identifier and attributes in the credential corre-

spond to the values or commitments sent previously;
– the property d2> 60|u is satisfied;
– the encrypted message sent previously is encrypted using

pk(k−|t tp) and contains the identifier in the credential.

The second ZK proof is similar. Note that the commitment
H(i |u,n|·) in messages (1) and (3) is the same, guaran-
teeing bs that the two certificates are indeed of the same
user.

Fig. 17 Formalisation of Identity Mixer: initial knowledge and trace

6.3.4 Smartcard scheme

The Smartcard scheme (Sect. 5.3.4) is formalised in Fig. 18.
In this system, the user’s personal information is exchanged
on her behalf by a tamper-resistant smartcard. The smart-
card is modelled as actor al. The smartcard has a certified
private key; however, this private key is shared between dif-
ferent smartcards so it does not identify the user. Instead, the
smartcard has a secret user identifier i |·al , generated on the
card, which is used to generate pseudonyms. The actors i i ,
is, and bs each have a private key and a corresponding public
key certificate signed by the certification authority.
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Fig. 18 Formalisation of Smartcard scheme: initial knowledge and
trace

The messages from the registration part of the trace cor-
respond to Fig. 13a; the messages from the service provision
part correspond to Fig. 13b. Parties derive a shared session
key using authenticated key agreement based on public key
certificates and exchanged randomness. The smartcard gen-
erates pseudonyms of Alice with respect to the two identity
providers using hashes. In the service provision phase, q|·
and dm|· represent bs’s query: what information it needs
and how recent it should be.

Note that in [100], the exact format of the encrypted mes-
sage to the trusted third party for anonymity revocation is
not specified. We chose an encryption of the user’s identifier
at the address provider because this is most appropriate for
our scenario. Also, it is not specified how attributes are sent
to the smartcard for caching; we chose to add one additional
message to the registration phase containing all attributes.

6.4 Step 4: Verify privacy properties and analysis of results

Step 4 of our framework is to verify which requirements
are satisfied by the analysed systems. This step is performed
automatically using our Prolog tool (Sect. 3.3): given the
formalised requirements (Sect. 6.2) and communication in
the systems (Sect. 6.3), the tool automatically determines
which requirements hold in which systems. (More precisely,
it computes the state that the given initial state evolves into
by the given trace, also checking trace validity (see “Appen-
dix 1”); then computes the views of actors and coalitions in
this state; and finally, verifies which of the given require-
ments hold in these views.) The results are shown in Table 6:
we now analyse them.

6.4.1 Non-privacy requirements

The two non-privacy requirements attribute exchange (AX)
and anonymity revocation (AR) are satisfied in all systems.
Indeed, attribute exchange is the basic requirement of an IdM
system. It is worth noting the relationship between AR and
ISL. In smart certificates and the linking service model, ISL
does not hold. In this case, AR holds automatically because
the service provider and identity providers can link service
accesses to user profiles (even without the help of the trusted
third party). In the two systems satisfying ISL (the Identity
Mixer and Smartcard systems), the transmission of an identi-
fier encrypted for the trusted third party is necessary to fulfil
this requirement.

6.4.2 Detectability requirements

The detectability requirements with respect to the service
provider, property-attribute undetectability (SPD) and irrel-
evant attribute undetectability (SID), verify the possibility
to reveal properties of attributes without revealing the exact
value; and to reveal some but not all attributes. In smart cer-
tificates, the complete certificate is transmitted, so it satisfies
neither requirement. To address SID, the identity provider
could issue a separate credential for each user attribute. To
partially address SPD, the identity provider could issue sev-
eral credentials proving common properties of attributes, e.g.
an “age > 60” credential. These latter credentials could be
obtained during the service provision phase, in effect trans-
forming smart certificates into a relationship-focused system.
Indeed, this variant is discussed in [77]. Another possibility
is to use certificates that allow efficient proofs of knowledge,
as in the Identity Mixer system.

In the linking service model, SPD does not hold. Actu-
ally, the linking service model focuses primarily on involve-
ment and linkability issues, leaving the details of the actual
attribute exchange to underlying standards. However, in these
standards (in particular, SAML), it is not possible to exchange
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Table 6 Comparison of privacy requirements claimed and satisfied by the various systems

Filled check-mark: satisfied and claimed; empty check-mark: satisfied and not claimed; filled cross: not satisfied and claimed; empty cross: not
satisfied and not claimed (see Table 3).
† may not be satisfiable efficiently depending on non-privacy-related requirements

properties of an attribute instead of its value. Recently, an
extension to SAML to achieve this has been proposed [73].
With this extension (or other instantiations), the requirement
may hold.

IdP attribute undetectability (ID) and LS attribute unde-
tectability (LD) also do not hold in the linking service model.
This is because the linking service and the subscription
provider both receive the signed authentication assertion
from the address provider as guarantee that the user has
logged in. However, in the SAML standard, the attributes
are part of this signed message, so they also need to be for-
warded. Technically, this could be easily solved by signing
the attributes separately from the authentication information.
Again, this problem is due to the instantiation of the model
with SAML. Note that although ID is not explicitly claimed
by the other IdM systems, they do satisfy it.

6.4.3 Involvement requirements

The involvement requirements state that an identity provider
should not know about the user’s involvement with other
identity providers (mutual IdP involvement undetectability,
IM) or service providers (IdP-SP involvement undetectabil-
ity, ISM). In credential-focused systems, this is natural: the
identity provider issues a credential to the user without
involving others, and it is not involved in service provisions.
Indeed, smart certificates, Identity Mixer, and the Smartcard
scheme all satisfy IM and ISM.

In the linking service model, ISM does not hold because
there is direct communication between the identity providers
and the service provider. In a variant of the model [31], the
identity providers and service provider communicate indi-
rectly via the linking service. However, here the identity
providers encrypt the attributes for the service provider (to
preserve privacy with respect to the linking service) and so
still need to know its identity. To prevent this, some kind
of trusted intermediary (like the smartcard in the Smartcard
scheme) seems to be necessary.

Moreover, the linking service model does not satisfy IM.
The subscription provider learns from the authentication
assertion that the user has an account at the address provider
(but not the other way round). This problem is also men-

tioned in [31]: while “multiple [identity providers] must give
[a service provider] the aggregated set of attributes without
knowing about one another’s involvement”, the authors con-
cede that “linked [identity providers] may become aware of
just one other [identity provider]—the authenticating [iden-
tity provider]—during service provision”. IM can be satisfied
(within the standards used) if the subscription provider trusts
the linking service to verify the address provider’s signa-
ture. Another possibility to satisfy the requirement may be
to use group signatures [33] for the authentication assertion
from the address provider. This solution prevents the sub-
scription provider from learning at which identity provider
the user authenticated, but at the cost of reduced accountabil-
ity.

6.4.4 Linkability requirements

Finally, we discuss the results for the linkability require-
ments. Session unlinkability (SL) is a natural requirement for
relationship-focused systems, because the identity provider
generates a new signature over the attributes at every service
provision. Indeed, it holds for the linking service model. It
also holds for the credential-focused Identity Mixer system
because rather than showing the credential (which would
allow linking), the user just proves the validity of proper-
ties using ZK proofs. In the Smartcard scheme, the smart-
card is trusted to correctly send attributes from the creden-
tials it knows. In the smart certificates scheme, however, the
complete credential is shown so the requirement is not sat-
isfied. IdP service access unlinkability (IL), in contrast, is
natural if the identity provider is not involved in service
provision, i.e. for the credential-focused smart certificates,
Identity Mixer, and Smartcard schemes. It is less natural
for relationship-focused systems such as the linking ser-
vice model. In this case, private information retrieval [35]
can be used so that at least the non-authenticating identity
provider does not learn which user he is providing attributes
of.

To achieve IdP profile unlinkability (IIL), global iden-
tifiers should be avoided in credential-focused as well as
relationship-focused systems. Smart certificates, being based
on the user’s public key certificate, do not satisfy this
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requirement. In Identity Mixer, IIL holds because the iden-
tity providers do not learn the identifiers of the credentials
they issue. In the Smartcard scheme, it holds because each
identity provider learns a different identifier based on a secret
known only by the smartcard. In the linking service model,
the authenticating identity provider generates a session iden-
tifier and includes it in the authentication assertion sent to
the other identity provider. This forwarding of the assertion
can be avoided if identity providers trust the linking service
to verify the authentication assertion: identity providers can
then issue attributes under different session identifiers, and
the linking service can assert the link between them. How-
ever, this only partially solves the problem: identity providers
are still both involved in service provision, so they may link
using timing information. Indeed, just eliminating global
identifiers does not fix IIL in our model.

IdP-SP unlinkability (ISL) does not hold for the same two
systems that also do not satisfy IIL and for similar reasons.
In smart certificates, all parties learn the user’s public key
certificate; in the linking service model, the service provider
learns the session identifier from the authenticating identity
provider. The other systems satisfy it: in Identity Mixer, not
even the issuer of the credential can recognise a ZK proof
about it; in the Smartcard scheme, the smartcard ensures that
the information flow between identity providers and service
providers is restricted to just the attributes.

However, as a consequence of ISL holding, extra work
is needed to achieve accountability in two respects. First, a
message encrypted to a trusted third party is provided to the
service provider to achieve anonymity revocation. Second,
although service providers do not learn a credential identi-
fier, they do need assurance that the credential has not been
revoked. In the Smartcard scheme, the suggested solution is
to let the smartcard perform a regular revocation check. Sim-
ilarly, in the Identity Mixer system, credentials can be given
a short lifetime and be checked for revocation at re-issuing
[23]. In both cases, revocation is not immediate.

For Identity Mixer, two proposals for immediate revoca-
tion have been done [27]. The first proposal is to include a
serial number in the credential. The credential can be issued
so that either the identity provider learns this serial number
or not. The former case makes ISL not satisfied. In the lat-
ter case, ISL holds but the credential cannot be revoked if
the user loses her serial number or does not wish to partic-
ipate. Depending on the situation at hand, this latter behav-
iour may not be acceptable. The second proposal is to use
a ZK proof that the credential is on a public list of valid
credentials [23]. This allows revocation without the user’s
help while not breaking ISL; however, the user needs to keep
track of all revoked credentials in the system, and despite
recent advances [23], this may still not be efficient enough.
Note that the Smartcard scheme does not support immediate
revocation at all.

7 Discussion

In this section, we discuss several applicability aspects of our
analysis framework: what privacy requirements can be veri-
fied, how the scenario should be defined, and what systems
can be modelled. We also discuss possible generalisations,
and effort needed to analyse a new system.

Privacy requirements Our framework can be used to ver-
ify any data minimisation requirement expressible in terms
of the elementary detectability, linkability, and involvement
requirements described in Sect. 2.3. Although the case study
demonstrates that this includes many relevant requirements
proposed in the literature, there are also privacy aspects that
our model does not capture. Most significantly, we allow
only limited reasoning (via attribute properties) about the
meaning of pieces of personal information other than identi-
fiers. For instance, we do not allow a piece of information to
be inferred from several others, e.g. “address” follows from
“street name” and “house number”. Also, we do not consider
(probabilistic) links due to combinations of non-identifying
attributes, e.g. matching name and post code from two pro-
files imply a link with high probability. This choice reflects
the goal of our approach, namely to compare the relative pri-
vacy of different systems (that differ in what identifiers are
used and how). On the other hand, to obtain a full understand-
ing of the privacy of users that does take such inferences into
account, our approach can be complemented with orthogonal
(e.g. probabilistic) methods (see Sect. 8).

Apart from explicitly transferred information, i.e. the
user’s attributes, we analyse one particular kind of implic-
itly transferred information; namely, involvement require-
ments. However, other kinds may be of interest as well. For
instance, the number of transactions performed by a user
may be privacy sensitive, as may be the mere date and time
of certain activities (see, e.g. privacy issues in smart metering
systems [82]). Knowledge about numbers of transactions can
be expressed in our model; date and time may be appended
as “tags” to communication.

Scenario-dependence Our analysis framework requires the
specification of a scenario. In particular, this scenario needs to
be designed in such a way that all privacy properties to be ver-
ified can be phrased in terms of personal information occur-
ring in the scenario. It is straightforward to analyse variants of
the scenario by modifying it, but this does involve some work
in practice. Our analysis framework and its implementation
are designed to verify properties of particular elements in a
particular trace; both need to be modified for other scenarios.
This task can be lightened by exploiting Prolog’s program-
ming features. For instance, the scenario in our case study
involves two traces of service provisions, which are almost
the same; in our implementation of the model of the systems,
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both are generated by one Prolog predicate which takes the
variable elements as input. This approach can also be used to
generate traces with more actors or protocols and to generate
lists of checks that need to be performed for a given privacy
requirement. Since the conclusions of an analysis depend on
the scenario, it should be chosen carefully to capture all rel-
evant privacy aspects. We refer to [98] for a symbolic exten-
sion of our framework which is independent from a particular
scenario.

Adaptation and generalisation Our framework is designed
to be general enough for the analysis of any system in which
actors use communication protocols to exchange personal
information. If the message format of the communication
protocols in the system is available, then the main difficulty
in modelling the system is to make sure the cryptographic
primitives used in the protocols are accurately modelled.
Although the present work models several frequently used
primitives, the model may need to be adapted to reflect char-
acteristics of the particular implementations used (e.g. digi-
tal signatures may be with message recovery instead of with
appendix, meaning that the message can be derived from the
signature [69]); or new cryptographic primitives may need to
be added. Once this is done, modelling the actual protocols
is usually a matter of industrious bookkeeping.

To give the reader a flavour of the effort needed to model
new primitives, we draw upon our experiences in extending
the basic formal model of [99] to perform the case study in
this paper. Some operations are easily expressible in terms
of standard primitives. For instance, for our purposes, com-
mitments can be modelled as hashes because they satisfy
the same inference rules. When modelling primitives, it is
helpful to look at existing formalisations, e.g. using deduc-
tive systems [37,49] or equational theories [2,16]: they can
usually be translated to the three-layer model. For instance,
the formalisation of labelled encryption used in this work
is based on [26]. Special attention should be paid to test-
ing rules. Deductive systems do not usually consider test-
ing; equational theories can include rules, e.g. for signature
verification (e.g. [43]), which translate to testing rules in the
three-layer model, but may include only those rules that were
relevant to the analysis at hand. Thus, to obtain a complete
set of testing rules, one needs to take a lower-level look at the
operation of the primitive. In addition, note that existing for-
malisations (e.g. [26]) may not explicitly model randomness
in non-deterministic primitives; however, in our model, this
is needed because we assume messages to be deterministic.

In some cases, no suitable existing formalisation of a cryp-
tographic primitive may be available. In such a case, the
general (security) definition of the primitive (e.g. [41] for
ZK proofs) generally suffices for obtaining a description for
the language Lc. However, different implementations of a
primitive may give rise to different inference rules. Thus, to

obtain inference rules, one needs to consider the particular
implementation used in the protocol under analysis. In our
experience, this is feasible. Note that because we are only
interested in privacy aspects of the primitives, usually some
simplifications can be made. See “Appendix 2” for two exam-
ples: ZK proofs and anonymous credentials.

As mentioned in Sect. 3, our model imposes several
assumptions on the cryptographic primitives and operations
modelled. In particular, because we assume that differently
constructed messages cannot have coinciding contents, we
cannot model some operations such as “exclusive or” (which
satisfies that x ⊕ (x ⊕ y) = y). Also, our visible failure
assumption may cause an over-approximation the knowledge
of actors: in our model, actors can draw conclusions from the
fact that a cryptographic operation was applied successfully,
in practice, this may not be possible. These limitations may
be overcome by generalising our model through its connec-
tion with static equivalence (see Sect. 8); we leave this as
future work.

8 Related work

We discuss related work on our privacy analysis frame-
work (Sect. 8.1) and on the identity management case study
(Sect. 8.2).

8.1 Privacy analysis framework

The analysis of privacy entails two orthogonal concerns: what
information is leaked by how identifiers and other pieces of
information are exchanged in communication protocols; and
what inferences can be made from the information learned
in this way. The present work addresses the former concern,
which we discuss first; afterwards, we briefly discuss the
latter concern.

Formal analysis techniques have been applied to commu-
nication protocols for many years, mainly to verify security
properties [2,22,68,78]. Most formal methods rely on two
basic ideas: the Dolev–Yao attacker model and state explo-
ration techniques. In the Dolev–Yao attacker model, one
considers communication messages using idealised crypto-
graphic primitives, and an attacker who controls some or all
communication channels between legitimate parties (mean-
ing that he can insert and suppress messages at will, and fabri-
cate messages based on his observations). The reasoning that
the attacker performs to fabricate messages can be described
by deductive systems (e.g. [37,49]) or equational theories
(e.g. [2,16]). State space exploration techniques assess the
system security by analysing all possible evolutions of a given
system in the presence of a Dolev–Yao attacker. The require-
ments of a system are then verified by checking whether any
of the states that can be reached by the system correspond to
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an attack (e.g. the attacker knows a secret or has succeeded
in impersonating a legitimate user). Several process algebras
[2,19,70] provide machinery to perform state space explo-
ration. Other approaches have also been proposed, e.g. using
induction [78].

Recently, more and more work has focused on the use
of these techniques for privacy properties, in application
domains such as electronic toll collection [42], e-voting [43,
45], RFID systems [21], and Direct Anonymous Attesta-
tion [88]. These proposals express privacy in terms of “exper-
iments”: slightly different settings for the execution of the
same protocol that should be indistinguishable to an attacker.
For instance, in electronic toll collection, an attacker should
not be able to distinguish a setting in which a first car takes a
left road and a second car takes a right road from a situation
in which the first car takes the right road and the second car
takes the left road. Similarly, in Direct Anonymous Attesta-
tion, an attacker should not be able to distinguish a signature
produced by one trusted platform module from a signature
produced by another one.

Conceptually, our work differs from these existing formal
methods in several ways. We provide general definitions for
detectability and associability that take into account differ-
ent data subjects that may occur in a single protocol instance;
conversely, existing works either provide specific definitions
tailored to a particular setting or protocol [42,43,45], or only
consider links between messages and their senders [5]. More-
over, we explicitly model the knowledge of (coalitions of)
legitimate actors in the system as needed for analysis of
data minimisation, whereas existing methods focus on (mali-
cious) outsiders. Also, we consider knowledge in a particu-
lar scenario, whereas existing methods focus on a family of
scenarios. Although particular queries in our analysis frame-
work could be translated to queries using these existing for-
mal methods (e.g. using frameworks like [34] to convert a
trace to a set of actions by protocol roles), we expect that it
is infeasible to design a completely automatic translation to
queries that the tools available today are able to handle. Con-
versely, our privacy analysis framework achieves practical
privacy analysis and comes with an implementation.

At a technical level, however, there are similarities
between our model for reasoning about knowledge and exist-
ing models. Existing models reason about knowledge of an
attacker about message contents. Three popular definitions
cover whether an attacker knows the contents of a given piece
of information: weak secrecy [15], resistance against guess-
ing attacks [39], and strong secrecy [15]. The weakest defini-
tion, weak secrecy, defines secrecy as non-derivability using a
content-layer deductive system; as shown in [99], this prop-
erty holds exactly if no context-layer representation of the
contents can be derived using our three-layer model.

The other two existing definitions strengthen the concept
of weak secrecy by employing the notion of static equiva-

lence [2] of frames. A frame captures the knowledge of an
actor at a certain point in time. Intuitively, two frames are
statically equivalent if an actor cannot distinguish between
the situations modelled by the two frames. Resistance against
guessing attacks [39] of a frame models that an actor should
not have any way to verify if a guess he makes about the
contents of a particular piece of information is correct. This
is formalised by adding the actor’s guess to the frame, and
verifying that the situation in which the guess is correct is
statically equivalent to the situation in which the guess is
incorrect. Intuitively, in our model, the contents c of a piece
of information are resistant to guessing attacks if and only if
there is no context-layer item with contents c that is known
to be content equivalent to a guess with contents c. This
link can be made more precise and can be used to gen-
eralise the approach presented in this paper (see [95] for
details).

One strong point of static equivalence is that it can be for-
mally linked to computational models of cryptography [9];
compared to the equational theory of [9], our visible fail-
ure assumption on deterministic symmetric encryption is an
over-approximation of knowledge.

Strong secrecy [15] additionally takes into account that
the secret may have the same contents as any arbitrary other
message, as well as that the value of the secret may influence
the behaviour of actors. Our model (as well as the defin-
ition of resistance against guessing attacks) does not take
these aspects into account, so strong secrecy is, formally
speaking, stronger. Strong and weak secrecy are known to
coincide [40] under certain conditions in a certain equational
theory; an interesting direction for future work is to verify if
similar results hold for the equational theories correspond-
ing to our model. We remark that in practice, tools verify an
over-approximation of strong secrecy [16] and hence may
give false positives.

Similarly, existing notions of linkability [5,42,43,45] are
formally based on static equivalences. For instance, in the
electronic toll collection example given above, consider any
frame corresponding to a system evolution in which a first
car with identifier A goes left and a second car with identi-
fier B goes right. Unlinkability means that this frame should
be statically equivalent to a frame corresponding to a system
evolution when the first car has identifier B and the second car
has identifier A. In many cases, corresponding frames differ
only by the use of identifiers, in which case static equivalence
corresponds to the non-knowledge of content equivalence of
these identifiers, like our definition of associability. How-
ever, linkability also allows other correspondences and takes
into account that the value of the identifier may influence
the behaviour of actors, and is thus, formally speaking, more
powerful. Also in this case, existing tools over-approximate
linkability [16]; in practice, it is difficult to avoid false posi-
tives.
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There are also technical similarities between our model
of particular cryptographic primitives and other models from
the literature. Labelled encryption is a straightforward exten-
sion of normal encryption; our model is similar to the one in
[26]. The internals of (incorrect) protocols for authenticated
key agreement have over the years proven a popular target
for analysis using formal methods [22,66,78]; however, we
have not found prior works that formally model the external
behaviour of (correct) authenticated key exchange protocols
in a larger system.

For ZK proofs, both high-level and low-level formalisa-
tions exist. In [65], a low-level model of the operation of ZK
proofs is given; however, it cannot be used for knowledge
derivation; also, questions have been raised about its tech-
nical correctness [26]. Two high-level formalisations of ZK
proofs have been proposed [7,26] that, as ours, allow proofs
of a restricted set of properties. The equational theory in [7]
models the verification of ZK proofs (as our testing rules); the
model of [26] only allows correct ZK proofs to take place and
does not express their verification. The latter simplification
is not suitable for our method, because verification expresses
that an actor learns information in new contexts. Note that
both model “signature proofs of knowledge” rather than 
-
proofs; however, our methods can also capture that variant.

Three recent proposals [26,65,88] are relevant for our for-
mal model of anonymous credentials. Li et al. [65] only
considers operational aspects of anonymous credentials.
Camenisch et al. [26] models credentials and their showing
protocol. The model of credentials is similar to ours, and it
includes a rule to obtain a credential from a committed mes-
sage as in our low-level formalisation (“Anonymous creden-
tials and issuing” section of Appendix). The showing proto-
col is formalised in terms of ZK proofs. However, credential
issuing is not considered in [26]. Finally, Smyth et al. [88]
model joining and signing protocols for ECC-based Direct
Anonymous Attestation, which are very similar to issuing and
showing protocols for BM-CL-based anonymous credentials
[25]. Although our model is based on a different signature
scheme [24] and specified at a higher level, their model of
signatures generally corresponds to our model of signatures
from committed messages in “Anonymous credentials and
issuing” section of Appendix.

Apart from the concern of learning information leaked by
communication protocols, the orthogonal concern of infer-
ences made on learned information has also received sub-
stantial attention. In particular, the inference of links based
on non-identifiers has been approached from two directions:
experimentally linking given data or theoretically guarantee-
ing that such linking is impossible. Methods to link data from
two databases using non-identifiers have been investigated
since the seminal paper of Fellegi and Sunter [48]; see [60]
for a recent comparative study of available implementations.
Data from more than two sources can be grouped together

based on pairwise decisions using domain-dependent [13,71,
76,84] or domain-independent [14,32] algorithms, or statis-
tical techniques [83]. On the other hands, statistical frame-
works to guarantee that linking personal information in a dis-
closure to other data is impossible (i.e. anonymity) include
k-anonymity [36], �-diversity [67], t-closeness [64] and dif-
ferential privacy [46]. Koot [59] reports on experiments in
which the actual degree of anonymity of particular disclo-
sures is computed. Inferences of attribute values based on
other attributes are covered in [81]. Our approach can be
complemented with these techniques to obtain a full under-
standing of privacy leakage due to communication.

8.2 Privacy in identity management

The relevance of privacy by data minimisation in the iden-
tity management setting is well established in the literature.
It has been recognised as a basic “law of identity” for the
design of IdM systems [28]. Hansen et al. [53] argue that
privacy-enhancing IdM systems should satisfy a high level of
data minimisation with user-controlled linkage of personal
data and by default unlinkability of different user actions.
Pfitzmann and Hansen [79] define privacy-enhancing iden-
tity management as preserving the unlinkability between user
profiles. Finally, in a general survey, Alpár et al. [3] identify
three main privacy issues in identity management: linkabil-
ity across domains, identity providers knowing user transac-
tions, and violation of proportionality and subsidiarity (i.e.
the exchange of minimal information needed for a certain
goal). These three issues correspond to our three kinds of pri-
vacy requirements: linkability, involvement, and detectabil-
ity, respectively. In contrast to the vision of minimising actor
knowledge, Landau and Moore argue that preventing ser-
vice providers from collecting transaction data may not be
desirable because it prevents the adoption of IdM systems in
practice [62]. This falls into a broader discussion on incen-
tives of participants in IdM systems [4,29] that is out of scope
for this work.

This work aims to improve the way privacy by data
minimisation is assessed compared to existing compar-
isons [1,55]. Both comparisons of IdM systems that we
are aware of consider data minimisation as one aspect of
a much more general comparison of IdM systems. Data
minimisation requirements are specified in a high-level way
and verified manually by inspecting the user interface and
documentation of the systems. For instance, Identity Man-
agement Systems [1] considers three different criteria:
“usage of pseudonyms/anonymity”; “usage of different
pseudonyms”, and “user [is] only asked for needed data”
(judged on a yes/no scale). Hoepman et al. [55] considers
two: “directed identity”/“pseudonymous/anonymous use”
and “minimal disclosure” (judged on a ++ to −− scale). To
improve the objectivity and accuracy of such assessments,
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scores for such criteria may instead be obtained by aggregat-
ing formal analysis results like ours. To obtain a better under-
standing of privacy differences, these formal results can then
be analysed as in Sect. 6.4. However, note that our method
can only be used to assess data minimisation requirements
given what information should be exchanged; to verify if this
exchange of information is really needed or consented to by
the user, other methods (e.g. [38]) should be used. Some other
aspects of the privacy assessment in [1,55] seem less suitable
for formal verification, e.g. the user friendliness and the use
of standards in the systems.

Some formal works on privacy in identity management
are available. In [79], privacy-enhancing identity manage-
ment is defined as preserving unlinkability between dif-
ferent user profiles, and the meaning of linkability and its
relationship with related concepts is explored in a semifor-
mal way. Their informal definitions formed the basis of our
original work [96] on representing knowledge of personal
information. Other formal work on identity management has
mainly focused on safety properties with respect to misbe-
having attackers, rather than privacy properties with respect
to insiders who follow the protocol specification. In this con-
text, unlinkability [65,91] and undetectability [26] properties
have been considered for Identity Mixer and related anony-
mous credential schemes. For SAML [30], a standard for
the exchange of identity information between identity and
service providers used in the linking service model, secrecy
properties have been considered [6]. Our work differs from
this latter category in two respects: first, we define prop-
erties in a general setting, allowing comparisons between
different systems; and second, we distinguish between the
roles of different insiders rather than considering one out-
sider, enabling us to express which (coalitions of) actors
can associate or detect certain information, and which can-
not.

In this work, we focus on minimising knowledge of per-
sonal information by technical means; other works address
other aspects of privacy. Landau et al. [61] argue that privacy
protection can be achieved not just technically, but also by
legal and policy means. Hansen et al. [53] argue that apart
from ensuring data minimisation, privacy-enhancing IdM
systems should also make the user aware of what information
is exchanged about her and who can link it; and allow the user
to control these aspects. Bhargav-Spantzel et al. [12] stress
the importance of trust between different parties in identity
management, and in particular, trust of the user in other par-
ties’ handling of her personal information. Our method can
complement this demand for transparency by providing a pre-
cise view on how the choice of IdM system impacts privacy.
However, interestingly, recent research in behavioural eco-
nomics suggests that offering transparency to users might
actually reduce their privacy by inducing them to release
more information [20].

9 Conclusions and future work

In this work, we have presented a general formal framework
to compare communication protocols with respect to privacy
by data minimisation. Requirements relevant in a given set-
ting are formalised independently from any particular com-
munication protocol in terms of the knowledge of (coalitions
of) actors in a three-layer model of personal information.
These requirements are then verified automatically for partic-
ular protocols by computing this knowledge from a descrip-
tion of their communication. Using this formal approach,
we obtain results that are precise and verifiable, yet provide
enough detail to obtain real insight into privacy differences.
In contrast to existing methods, our framework allows for the
automated verification of a wide range of privacy require-
ments in one single model.

Our framework may be generalised and extended along
several directions. First, the model of personal information
can be made more expressive. For instance, to analyse pri-
vacy in application domains where the number and timing
of transactions is relevant, the model can be extended to
take these aspects into account. Other relevant extensions
include pieces of information that refer to multiple data sub-
jects (see [98]); or more flexible reasoning about attribute
properties. Second, the model of cryptographic primitives
can be made more general. Our current model is based on
two assumptions (structural equivalence and visible failure)
that limit the number of cryptographic primitives that can
be modelled. We are exploring how these limitations can be
overcome by modelling cryptographic primitives using an
equational theory. Finally, our model depends on the choice
of a particular scenario in which requirements are verified;
we refer to [98] for a generalisation of our model that is
independent from a particular scenario.

We have demonstrated our framework by performing a
privacy comparison of identity management systems. In the
process, we have defined a comprehensive and detailed set of
privacy requirements; to the best of our knowledge, no such
set of requirements was available before. We have modelled
4 representative IdM systems and verified which of the 11
requirements hold for which systems, giving 44 checks in
total. It is worth noting that only 17 of the 44 checks are
mentioned as (parts of) requirements in the design of the
respective IdM systems. In one instance, we found such a
requirement not to hold (a problem which is also mentioned
by the authors of the system themselves). In another instance,
we clarified the exact setting in which a requirement holds,
which may a solution that is unrealistic for performance or
accountability reasons. The remaining 27 of the 44 checks
do not correspond to requirements explicitly stated by the
designers of the IdM systems. In this work, we have estab-
lished whether they hold or not, leading to a more compre-
hensive analysis and comparison of IdM systems. Interesting
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extensions to the case study would be to consider require-
ments for IdM systems based on the extensions mentioned
above (e.g. requirements on knowledge about the number of
transactions); and additional IdM systems like U-Prove [75]
and the STORK Platform (https://www.eid-stork.eu/) as well
as other variants of the systems we considered.
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Appendix A: Trace validity

In this appendix, we introduce “trace validity” as a way of
verifying that all knowledge required for a trace has been
modelled. Our framework takes as input a trace, together
with the initial knowledge of the actors. However, there are
no guarantees that the trace and initial knowledge provided
by the analyst are correctly specified. This is fundamental for
the analysis, because the initial knowledge also determines
whether an actor can link the information he has observed to
information he already has. The concept of “trace validity”
checks whether the initial knowledge and trace correspond
to a valid scenario (i.e. a scenario in that can actually occur)
and hence serves as a “sanity check” for the model.

To define trace validity, we need to model whether a con-
text item has occurred in communication before. When an
actor a initiates a protocol instance π in state {Cx }x∈A, no
communication in the protocol instance has taken place yet,
so the state does not contain context items with domain π .
Hence, to check whether a can send message m|π , we cannot
just verify if Ca � m|π . Instead, we need to model that the
actor “instantiates” the context items in m|π by items from
other domains. On the other hand, if actor b wants to reply to
message m|π , then he no longer has this freedom to instanti-
ate context items because contents of the context items from
m|π he uses in his reply should corresponds to their contents
in m|π itself. In the former case, we call the context items
undetermined; in the latter case, we call them determined:

Definition 13 Let {Cx }x∈A be a state. We say that p ∈ Pc is
determined in {Cx }x∈A if, for some a ∈ A and m ∈ Ca , p
occurs in m; or if p is a property ψi (q) of some q occurring
in m. Otherwise, p is undetermined.

We now formalise when an actor has sufficient knowledge
in a certain state to send a certain message m|π . The actor
can instantiate any undetermined items in m|π , but needs
to respect the existing instantiation of determined items in
m|π . We capture this by requiring that the actor can derive
a message n that is equal to m, except that undetermined
items are replaced by items of his choice. Intuitively, the

actor having sufficient knowledge to send m|π means that,
when the message m is added to his knowledge base, he does
not gain any new knowledge from this. For instance, if the
actor can associate personal information from message m|π
to information in his knowledge base, then he should be able
to make the same associations using the corresponding item
in n. The restrictions on n in the definition below guarantee
that this is indeed the case:

Definition 14 Let {Cx }x∈A be a state, and a ∈ A an actor.
Context message m is determinable by a in {Cx }x∈A if there
exists a context message n ≡ m such that Ca � n, and the
following conditions hold:

1. Whenever m@z is determined, then m@z = n@z;
2. Whenever m@z1 = m@z2, then n@z1 = n@z2;
3. If m@z = d|κk (k �= ·) and some e|ηk ∈ Ic ∪ Dc is deter-

mined, then n@z ↔a e|ηk ;
4. If m@z1 = d|κk , m@z2 = d ′|κk (k �= ·), and no e|ηk ∈

Ic ∪ Dc is determined, then n@z1 ↔a n@z2.

Condition 1 states that the actor cannot replace determined
items; condition 2 states that he should replace items consis-
tently. Conditions 3 and 4 make sure that actors cannot learn
new associations by using n as m: condition 3 applies to con-
texts already used in previous communication, and condition
4 applies to previously unused contexts. For determined mes-
sages, determinability and detectability coincide.

The following example demonstrates determinability:

Example 11 Consider the state {C0
x }x∈A from Example 10.

The client’s message m = E ′
shkey|·(id|su)|π is determinable

by cli in this state. Namely, take n = E ′
skey|··(id|ab

4 ). Then
m ≡ n, and this message trivially satisfies conditions 1–4 of
the definition.

Also, the server’s reply to this message is determinable.
Namely, consider the state {C1

x }x∈A that {C0
x }x∈A evolves

into. The server’s knowledge base is

C1
srv = C0

srv ∪ {i p|·cli , i p|·srv, E ′
shkey|·(id|su)|π },

and the server’s reply is

m = E ′
shkey|·({age|su, n|·, Sk−|srv

({age|su, n|·})})|π .
Indeed, one can verify that

n = E ′
shkey|π· ({col1|db

1 , n|··, Sk−|πsrv
({col1|db

1 , n|··})})
satisfies the conditions from the above definition. Namely,
no determined items from m have been replaced in n (con-
dition 1); both occurrences of age|πsu have been replaced
by the same item and similarly for n|π· (condition 2); and
col1|db

1 ↔srv id|πsu , i.e. the message contains only associa-
tions known by srv (condition 3). Condition 4 holds trivially
because there are no two context items satisfying the given
condition.
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Table 7 Determinability requirements for the different types of message transmissions

t Determinable by a Determinable by b

a → b : m {a,b,m} ∅

a �→ b : ZK(m1; m2; m3; {na,nb}) {a,b,m1,na} nb

a �→ b : ICredm1
m2 (m3; {n j }7

j=1) {a,b,pk(m2),m1,n1,n2,n3,n7} {pk(m2),m2,m3,n4,n5,n6}

Trace validity is defined step-by-step from the validity of
its message transmissions. A message transmission consists
of identifiers a,b of the communication parties and commu-
nicated message m. For validity, we require determinability
both of the message and of the communication identifiers.
This way, we check that both the knowledge required to send
the message, and the knowledge of where to send the mes-
sage to, have been modelled. Formally, for a basic message
transmission a → b : m, this means determinability by the
sender of the context message {m,a,b}. For the other two
types of the form a �→ b : m modelling cryptographic pro-
tocols, both actors contribute information: the initiator of the
protocol should determine the sender and receiver addresses
a, b, and both parties contribute parts of m:

Definition 15 Let {Cx }x∈A be a state, and t a message trans-
mission. Let t = a → b : m or a �→ b : m, and let a, b ∈ A
be the actors such that a ↔ σ(a), b ↔ σ(b). We say that
t is valid in {Cx }x∈A if the messages indicated in Table 7
are determinable by a and b, respectively. Trace t1; · · · ; tk

is valid in state {C0
x }x∈A if, in the evolution

{C0
x }x∈A

t1→ {C1
x }x∈A

t2→ · · · tn→ {Cn
x }x∈A,

each message transmission ti is valid in respective state
{Ci−1

x }x∈A.

For ZK proofs, the prover needs to know the private infor-
mation for the proof and both parties contribute randomness.
Note that to participate in the protocol, the verifier does not
need to know the public information or the properties to be
proven; however, he does need to know this information to be
able to interpret the proof (i.e. to apply the testing rule). For
credential issuing, the user needs to know her secret identi-
fier m1, randomness, and the issuer’s public key; the issuer
needs to know his private/public key pair, the attributes to be
signed, and additional randomness.

The following example highlights validity of message
transmissions and traces.

Example 12 Consider the trace given in Example 10. In
Example 11, we showed determinability of the two messages
transmitted in the trace; this argument can be easily extended
to conclude determinability of the messages {a,b,m} from
Definition 15, and hence validity of the two message trans-
missions. We conclude that the trace is valid.

Trace validity is implemented in the tool supporting our
framework. We briefly discuss the implementation. The main
task in implementing trace validity is to check for deter-
minability of a message m; that is, to find a derivable message
n that is equivalent to m and satisfies properties (1)–(4) from
Definition 14. Properties (1) and (2) place restrictions on the
form of the message, which can be expressed in terms of
free variables in a Prolog query to the deductive system. For
properties (3) and (4), we check associability as in Sect. 3.3.

Appendix B: Inference rules for zero-knowledge proofs
and credential issuing

In this appendix, we show how our models of ZK proofs and
the credential issuing protocol are derived.

B.1 Zero-knowledge proofs

ZK proofs allow a prover to prove to a verifier that he knows
some secret information satisfying certain properties with
respect to some public information, without revealing any
information about the secret. For instance, consider a large
group of prime order n generated by a group element g. Note
that given value h, it is infeasible to determine the discrete
logarithm x = loggh; this property can be exploited to build
a public key cryptosystem in which values of h are public
keys, and the corresponding values of x are private keys. A
prover who knows x as well as n, g, and h can engage in a
ZK proof protocol with a verifier who just knows n, g, and
h; when the protocol has finished successfully, the verifier
is convinced that the prover knows the value of x , without
learning anything about its value.

The general definition of ZK proofs leaves open different
kinds of implementations; we model a particular kind of ZK
proof called 
-protocols [41]. 
-protocols are three-move
protocols in which the prover first sends a commitment; the
verifier responds with a randomly generated challenge; and
finally the prover sends a response. The ZK proofs used in
the systems analysed [8,24,25,51] are of this kind.

An example 
-protocol is the protocol proposed by
Schnorr to prove knowledge of x = loggh in the setting
given above (Fig. 19a). The prover computes a random u
and sends a commitment gu to the verifier. The verifier
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responds with a random challenge c. The prover calculates
response r = u + cx . The verifier convinces himself that the
prover indeed knows the secret x by checking that gr = ahc

using the response, commitment, and public information. The
prover can only calculate a valid response if he knows the
secret; also, the response does not reveal any information
about x [85].

We formally model ZK proofs at a high level using the
primitive ZK(m1; m2; m3; n). The secret information m1

and public information m2 are described in terms of mes-
sages; the ZK proof proves that the public information has
a certain message structure with respect to the secret infor-
mation. In addition, the proof can show that context data
items d occurring in m1 satisfy properties ψk(d), listed in
m3. Finally, n represents randomness; in 
-protocols, n =
{np,nv}, representing the provers’ randomness np for the
commitment and the verifier’s randomness nv for the chal-
lenge. For instance, ZK(k−; pk(k−); ∅; {np,nv}) is a proof
of knowledge of the private key k− corresponding to public
key pk(k−) with no properties and contributed randomness
np,nv . From this high-level description in terms of struc-
ture of messages, the low-level description follows implic-
itly. For instance, in a setting where public/private key pairs
are of the form (h, x = logg h), the proof ZK(k−; pk(k−);
∅; {np,nv}) corresponds to a proof of knowledge of the dis-
crete logarithm x = logg h of h like the Schnorr protocol.
Figure 19 shows the Schnorr protocol and its formal model
in this setting.

In Fig. 20, we present a set of inference rules for the
ZK primitive. We first explain them and then argue that for
privacy purposes and under certain assumptions, it suffices
to consider the smaller set of rules presented in Fig. 4. We
first discuss what messages can be derived from a ZK tran-
script ZK(m1; m2; m3; {np,nv}) using elimination and test-
ing rules. The property proven by a ZK proof determines the
format of the messages in the ZK proof protocol. Hence, we

(a)

(b)

Fig. 19 Schnorr proof of knowledge and its formal model. a Schnorr
proof of knowledge. b Formal model of Schnorr proof

Fig. 20 Complete set of inference and rules for ZK (Ca a set of context
messages; m∗, n∗ context messages; pi properties of mk , i.e. every
pi = ψ j (mk) ∈ Dc for some j , k)

allow any actor to derive the properties m3 from the transcript
(�EZ′

1). (Because different properties may have identically
looking ZK proof protocols, this is an over-approximation
of knowledge.) The verifier randomness nv is transmitted as
challenge and so can be derived from the transcript (�EZ′

2).
Because both parties are assumed to know m2 before the
start of a ZK proof, it does not need to follow from the
transcript. However, depending on the protocol, it may be
possible to derive m2. For example, in the Schnorr example,
h = (gr a−1)−c. Hence, as a possible over-approximation,
we allow any observer to derive the public information m2

(�EZ′
3).

The fact that the protocol is zero-knowledge means that a
verifier (who knows m2, m3 and nv) should not be able to
learn anything about m1. In fact, if there are several possible
secrets m1 corresponding to public information m2, then the
probability distribution for protocol transcripts is required to
be independent from m1. Thus, it is impossible to test m1

from the transcript (Of course, if m2 determines m1, e.g. if
they are a public/private key pair, then m1 can be derived
using m2, but this is not due to the ZK proof). Because the
verifier, who knows all components of the ZK proof except
m1 and np, cannot deduce anything about the secret m1, any
inference rule to derive it needs to have np as a prerequisite.
By a similar line of reasoning, if m1 can be derived from
np, then an inference rule for np needs m1 or it needs to be
a testing rule. In fact, in the Schnorr proof, in 
-protocols,
all these inferences can be made: m1 can be derived directly
from np (�EZ′

4) and vice versa (�EZ′
5), and np can be tested

(�TZ′
2).

To generate a transcript ZK(m1; m2; m3; {np,nv}) of
a 
-protocol, an actor needs np for the commitment; nv
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for the challenge; and both pieces of randomness and the
private information for the response np (�CZ’). (Tech-
nically, the public information is not needed.) Similarly,
for determinability of the message transmission a �→ b :
ZK(m1;m2;m3; {np,nv}), the prover needs {m1,np} in addi-
tion to the communication addresses {a,b}; the verifier needs
nv .

There are two aspects the above model does not take into
account. First, from two ZK proofs using the same prover
randomness, the secret can be derived: in case of the Schnorr
proof, by computing (r−r ′)/(c−c′) from transcripts (a, c, r)
and (a, c′, r ′). This is a general property of 
-protocols
called special soundness. However, if the prover always hon-
estly generates his randomness, then this is very unlikely and
we can safely ignore it. Second, an actor can also “simulate”
a ZK proof transcript without knowing the secret informa-
tion by first generating the challenge and response and from
that determining the commitment. Such a simulation has the
exact same form as a ZK proof, but because the randomness
in the commitment is unknown, it cannot be used to derive a
secret corresponding to the public information. Such simula-
tions are very unlikely to correspond to ZK proofs that really
took place, so they are not relevant for knowledge analysis.

To express privacy requirements, the knowledge of ran-
domness is not directly relevant. In addition, assuming that
the randomness of the ZK proof is freshly generated and
not reused elsewhere, it is clear that it cannot help to derive
information indirectly: (�EZ′

4) is the only rule to derive per-
sonal information (namely, m1) using randomness, and it has
knowledge of np as prerequisite, which can only be derived
when m1 is already known. Ignoring rules (�EZ′

2), (�EZ′
5),

we obtain the inference rules given in Fig. 4 and determinabil-
ity requirements in Table 7.

B.2 Anonymous credentials and issuing

In an anonymous credential system, credentials credM1
k− (M2;

M3) assert the link between a user’s identifier M1 and
her attributes M2 using secret key k−, and such creden-
tials are issued and shown anonymously [24]. Anonymous
issuing means the issuer of the credential does not learn
the user’s identifier M1 (in particular, this means he can-
not issue credentials containing the identifier without the
user’s involvement). We model the issuing protocol by the
ICredM1

k− (M2; M ′
3) primitive. The randomness M ′

3 used in the
issuing protocol determines the randomness M3 in the cre-
dential. Anonymous showing means that it is possible to per-
form ZK proofs of ownership of a credential proving certain
properties. This is captured by our ZK primitive.

We model anonymous credential systems constructed
from signature schemes [24,25] as used in the Identity Mixer
system [8]. In general, this construction is possible if the sig-
nature scheme allows for issuing of signatures on committed

Fig. 21 Inference rules for signature scheme with signatures on com-
mitted values (Ca a set of context messages; k−, m∗, n∗ context mes-
sages)

(a)

(b)

Fig. 22 Anonymous credentials from signature scheme with signa-
tures on committed values. a Issuing protocol for anonymous creden-
tials. b Formal model of anonymous credential issuing protocol

values (Fig. 21). That is, a commitment S0
k−(m1,na) to mes-

sage m1 using randomness na is constructed using public
key pk(k−) (�CS0); this commitment is turned into sig-
nature Sk−(m1,m2,na,nb) using private key k−, message
m2 and randomness nb, (�CS0′

). Based on such a scheme,
an anonymous credential credm1

k− (m2; {na,nb}) is simply a
randomised signature (containing secret identifier m1 and
attributes m2) along with its used randomness. In the Iden-
tity Mixer system, two such signature schemes can be used:
SRSA-CL signatures [24] and BM-CL signatures [25]. There
are slight technical differences between the two; we discuss
SRSA-CL signatures and briefly outline the differences later.

The anonymous credential issuing protocol can be mod-
elled as a trace in terms of the signature scheme (Fig. 22a).
It involves a user a and an issuer b. As before, a is assumed
to have sent a commitment H(m1,n1) to her secret identifier
to b prior to initiating the protocol (Unlike the commitment
S0

k−(m1,n2) for the signature, H(m1,n1) does not depend
on k− and can thus be shared with other issuing or show-
ing protocols for credentials having a different key). In the
first two messages, actor a provides her commitment for the
signature and then proves that it is formed correctly; that
is, it indeed contains the identifier corresponding to the one
in H(m1,n1). Actor b uses the commitment to construct a
signature on {m1,m2,n2,n5} and sends the signature along
with his randomness to a. At this point, a knows the sig-
nature and the two pieces of randomness used in it: these
three components together form the anonymous credential,
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as shown in the figure (Note that b does not know n2, so
he does not have the complete credential). In the last step,
the signer b proves that Sk−(m1,m2,n2,n5) is valid; when
using the SRSA-CL signature scheme, this step is technically
needed to ensure the security of the signature [8]. Figure 22b
displays our high-level model of the issuing protocol and the
credential obtained from it.

The high-level inference rules (Fig. 4) and determinability
relation (Table 7) for cred and ICred follow from the lower-
level model in Fig. 22a. The credential’s signature can be
verified using messages {pk(k−),m1,m2}, and a credential
can be constructed from its components (�CR). Although
randomness can be inferred from the credential, we do not
model these inferences in the high-level model because they
are not relevant for knowledge of personal information.

From the issuing protocol, the user can infer the credential
using the randomness from the credential (�EI1). We check
the messages of the trace for further possible inferences. For
the two ZK proofs, (�EZ1) does not apply because there are
no proofs of properties. The (�EZ2) rule can be applied to
both ZK proofs occurring in the issuing protocol; this trans-
lates to rules (�EI2) and (�EI3). We also consider the deriva-
tion of the nonces n1, n2 (�EI2): n1 is generated outside of
the issuing protocol, so its derivation may be of interest; n2

is a prerequisite for (�EZ2). Rule (�EZ3) gives (�EI4). We
do not add a rule to derive S0

k−(m1,n2) from the transcript
because its knowledge is not relevant from a privacy point
of view. Also, this message does not allow the derivation of
any information that was not already derivable from the zero-
knowledge proofs. However, it does give testing rule (�TI2).
Testing rule rules (�TI1) and (�TI3) follow from the first
message transmission. The other testing rules (�TI4), (�TI5)

follow from the corresponding testing rule (�TZ1) for zero-
knowledge proofs.

Finally, consider ICredm1
k− (m2; {ni }7

i=1)’s determinability
requirements. Assuming fresh nonces, determinability of
{a,b,pk(k−),m1,n2} by a is required for the first message
transmission. For the first ZK proof, determinability by a
of n1 and n3 is required; and determinability by b of n4.
The next message means determinability of {k−,m2,n5} by
b. The last ZK proof additionally means determinability of
{pk(k−),n6} by b, and n7 by a. We get the determinabil-
ity requirements given in Table 7. Note that technically, a
does not need m2 to run the protocol, and b does not need
H(m1,n1); however, in practice, they will check whether the
data supplied matches their expectations using the checks
expressed by the testing rules.

We mention two modelling details regarding the use of
SRSA-CL signatures for anonymous credentials. First, the
last ZK proof in the issuing trace is technically not a proof of
knowledge of the private key, but of the RSA inverse of part
of the issuer’s randomness. However, in terms of knowledge,
this proof is equivalent because the private key can be deter-

mined from the RSA inverse and vice versa [18]. Second,
due to the structure of the signature, different choices for na

and nb can lead to content equivalent signatures. However,
assuming na and nb are chosen at random, this happens with
negligible probability.

Finally, an alternative signature scheme supporting signa-
tures on committed values is the BM-CL scheme [25]. There
are two technical differences with the SRSA-CL-based sys-
tem presented above. First, BM-CL signatures have the addi-
tional property that they allow “blinding”: a user can turn a
valid credential credm1

k− (m2; {na,nb}) into a different creden-
tial credm1

k− (m2; {n′
a,nb}) (however, she is not able to change

randomness nb). Second, the final ZK proof in the issuing
protocol of Fig. 22 is not necessary for a BM-CL-based
scheme. We chose the SRSA-CL-based signature scheme
because the high-level model is simpler; however, in terms
of privacy, the choice of signature scheme does not matter.
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